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Executive Summary

This deliverable reports the progress in thmdegration, configuration and deployment of the E2Data
software stack on the heterogeneous execution environments of the E2Data project. It also documents
the Use Case applications implementation porting to Apache Flink. It also describes the curtenbétat

the two testbeds of the E2Data project and presents the performance evaluation methodology and
results.

This document comes to extend the deliverable of the first version of the E2Data describing first the
integration v2.0 of the Apache Flink and fadoVM frameworks. In a nutshell, v2.0 improves upon v1.0

in terms of programmability since v2.0 provides transparent hardware acceleration without exposing any
additional APIs to Apache Flink. Afterwards, we describe the current status iofipthementaton of the

Use Cases applications on Apache Flink. In theseetionsve describe the latest snapshot of the E2Data
deployment environment which relies on the execution of the Apache Flink Framework over an Apache
Hadoop YARN cluster and the TornadoVNhieavork, and afterwards we present the current status and

the technical details of the x86 amshrch64testbeds of the project. Next we present the test tool suite
utilized in the performance evaluation of the Use Cases applications and sordenaeth bentimarking
algorithms, such as-Kleans as well as the baseline performance results of the Use Cases applications on
both E2Data testbeds. Moreover, we present and discuss the v2.0 integration performance evaluation
results comparing the improvements on theMéans algorithm of the second version of integration.

The results extracted from this document draw the baseline performance of the Use Cases application on
the x86 andAarch64based testbeds of the projeshowcasing thechievedperformanceby scaling out

and scaling up the deployment environment. Furthermore, the results for the second version of
integration highlight the speedup achieved by the current integrated version against the initiallolee
scaling up the input data sizes.
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Introduction

This deliverable describes the work conducted so far by the E2Data Consortium in WP6, by reporting the
results of Tasks 6.2 and 6.3. Emphasis is given on the work conducted since the release of deliverable D6.2
[1] Therefore, D6.3 extends D6.2 in documenting the progress in the integration of E2Data components
and the Use Cas@JC)applications implementation. Also, it documents the current status of the two
testbeds d the E2Data project and presents the performance evaluation methodology and results.

The goal of WP6 is to support the integration, installation and configuration of the E2Data software
components stack. WP6 includes the Installation and the configurationhe integrated E2Data
environment for demonstration purposes of the implemented system prototypes, currently producing an
intermediate prototype version. The testbed féiarch64architecture, named KMAX, is deployed and
supported by KALEAO while the6x8rchitecture testbed by the ICCS partner. also providing power
consumption measurement capabilities.

WP6 provides power/performance evaluation of the integrated E2Datra system also including all UCs
applications. To evaluate the efficiency and performanf the system, extended with the partner UCs

the consortium utilizes and extends a test suite framework able to ensure software and performance
portability on the heterogeneous deployment environment of E2Data. Moreover, the test framework
provides to tle utilized welknown benchmarking algorithms, such adli€ans, and the partners UCs
reproducibility for the proper performance improvement evaluation. We also provide baselines, which
will show the benefits of the E2Data solution achieving the requirégmefithe project. In this deliverable

we focus on performance evaluation results for the second integration version of the E2Data accelerated
stack utilizing the #¥leans benchmarking algorithm on x86 architectures a well as results setting the
baselinesdr the UCs applications on both x86 aharch64testbeds.

The rest of this document is organized in the followingnner Sectionl presents the intermediate
prototype version of the E2Data software stack. The top level of the intermediate version of E2Data stack
contains the implementation of the (UC) applications using the Big Data processing framework of the
project, i.e. Apache ik [2] On the heterogeneous execution of Big Data processing we have the
intermediate version of integration of the Apache Flink framework with the TornadoVM fremke
realizing the execution on hardware accelerators. Sec®idescribes in brief the software components
realizing the E2Data deployment environment and aftervgapadesents the technical details of the x86
and Aarch64based testbeds of the project. Secti@rpresents the test tool suite implemented in the
context of the E2Dat project. The test suite ensures software and performance portability on the
heterogeneous execution nodes of E2Data. The utilized test framework provides to the utilized well
known benchmarking algorithms, such a$/Kans and the UCs implementations regucibility for the
E2Data stack performance improvement evaluation. Moreover, we describe the methodology followed
on the execution of the performance evaluatidhe datasetsandthe UCs Apache Flink implementations
under evaluation. Finally, in Sectidrwe draw the conclusions of the work done so far and discuss the
performance evaluation results.
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1. E2Data Prototype (v2)

This section presents the intermediate prototype version of the E2Data software stack. The top level of
the intermediate version of E2Data stack contains the implementation of the UC applications using the
Big Data processing framework of the project, Apache Flink2] On the heterogeneous execution of Big
Data processing we have the intermediate version of integration of the Apache Flink framework with the
TornadoVM framework realizing the execution on hardware accelerators.

In the following parts, we present the intermediate version of the E2Data integrated software
components, followed by the current status of the UCs applications implementation based on Apache
Flink.

1.1. E2DatgVv2) Integration

In this section we describe the integration v2.0 of Apache Flink and TornadoVM. We detail the differences
and improvements compared to v1.0 of the integration as well as provide a comparative evaluation
between the two versins. In a nutshell, v2.0 improves upon v1.0 in terms of programmability since v2.0
provides transparent hardware acceleration without exposing any additional APIs to Apache Flink (like
v1.0).

Apache Flink is a framewoftr distributed real time data procsingof applicationstypically writtenin
Java/ScalaA Flink application consists of two major unita JobManager and multiple TaskManagers.

The JobManager handles the coordination among TaskManagers. It assigns operations to them and
distributes the @ta according to the parallelism. On the other hand, TaskManagers are the processes on
which actual computations happen such as map, reduce, joins etc.

Despite TornadoVM and Apache Flink are both written in Java, there are somaowamnpatibilities with
regard to their granularity of execution and their APIs.

Apache Flink, being predominantly a streaming engine, orchestrates the execution in-graiimed
manner. In particular, various operators (eigap, reduce, etc.) can be tlibuted as separateasksor
chainedtasksto the Task Manager(s). Subsequently, the Task Manager(s) will perform a computation
described by the operator on the input dataset at the granularity of the datasd¢ment. This execution
model is also reflded in the Flink API. For examplastingl presents a simplenap function in Flink, in
which each element of the input datasén) is multiplied by 2.

public Integer map (Integer in){
return in *2;

LISTINGL. EXAMPLE OF A MAP FUNCTIOMNLINKAPI.

On the other hand, TornadoVM operates in a coagegned manner, as it is designed to offload parts of
Java applications on parallel Opergdimpatible ceprocessors (e.g. GPUs, FPGASs), which are utilised
better when operating in large data sizes. Therefdhe TornadoVM API has been designed to comply
with the OpenCL programming model that orchestrates the execution from the host to the available
heterogeneous cgrocessors in the system. For instantisting2 presents the samenap computation
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that described above using the Tornado\@Parallehnnotation. This annotation is used as a hint to the
TornadoVM JIT compiler that the loop can be accelerdte parallel execution.

public void map (int [] in, int [] out){
for (@Parallel int i= 0;i< in.length;i++) {
out[ij= in[i]* 2

LISTIN@. EXAMPLE OF A MAP FUNCTION@RNADY M.

As shown irListingl and Listing2, one more difference between Flink and TornadoVM is with regard to
the types of the input and output datasets. Apache Flink operates on object types (e.g., Integers, Doubles,
Plain Java Objects, Tuples), while TornadoVM operates on primitive types (e.g., int, double, float).

Integration: Version 1.0To address the aforementiodéncompatibilities between Flink and TornadoVM,
in the first version of the FlinkornadoVM integration we intervened in two Flink components;Ehient
and theTask Manager

In the FlinkClientcomponent, we provided a set of classes (elgrnadoMapFuoction) that developes
had to extend to achieve compatibility with TornadoVM.

For example, to execute thmap computation via TornadoVM while using the Flink ARdtihgl), the
provisionedTornadoMapFunctioglass would be required first to be extended, as presentddsting3.

public abstract class TornadoMapFunctionBase implements TornadoMapFunction

{

public abstract void compute(int []in, int [] out) ;
@Override
public void tmap(int []in, int [] out) {

compute(in, out);

LISTING3. TORNAD& M-APACHHELINK \L.0INTEGRATIOAPI.

Then, thecomputemethod in theTornadoMapFunctionBasdass would need to be extended with the
required computation based on the TornadoVM annotations, as presentedtingd. As shown iiisting

4, the computemethod usesprimitive arraysand employs the @Parallelannotation, fully adhering to
TornadoVM s programming model

public static final class Multiplication extends TornadoMapFunctionBase {
@Override
Public void compute ( int [] in, int []out){
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for (@Parallel int i= 0;i< in.length;i++) {
out[i] = in [iJ* 2;
}
}
}
LISTING}. EXAMPLE OMATRIX MULTIPLICATIONTI®RNADY M-APACHHEFLINK \1.0INTEGRATIQN
IntheTask Managec o mponent, we skipped any Flink proces:

instead we stored the information contained in the task. In casBatBSourcdasks, wefirst analyzed

the input data whichis stored in a Jav&ollection and then copiedt in primitive arrays. For example, if

the input data was grouped in a collectionTafple2<Integer, Doublewe would first create two primitive

arrays of typesnt anddoubleand then populate them with the values of tAeiple2fields. A secondary

case is the deployment of transformation tasks (e.g. Map, Reduce). In this case, we would store the user
function in specifibuffers, insteadf performing the computation desibed in the task to each element

of the input dataset. Another case of deployment is tataSinkask, which is the task that is used to
collect the computation results and send them back to @lent In this case, we would utilize all the
informationwe stored before, in order to perform the computation using TornadoVM.

As presented irListing5, we createda TornadoVMTaskScheduldo which we passhe primitive array
input data (n) and the functionst(nap) that were stored when the computational tasks were deployed.
After the computationis completed, the primitive resultso(it) of the computationis converted to the
expected return type of Flink aridsent back to the cluster.

public class Task {

new TaskSchedule( "s0" ) task ("t0" , Multiplication::tmap, in, out)

.StreamOut (out)
.execute () ;
}

LISTING. EXAMPLE OF INVOKINGRNAD® M VIAFLINK IN INTEGRATIOAL. Q.

Integration: Version 2.0The two main innovations thadre introduced in the second iteration of the
integration are: (i) the detachment to any new APIs and (ii) the support of Plain Java Object types, such as
Tuples To achieve that, changes were implemented in both Flink and TornadoVM. Specifically, on the
Flirk side, we addressed both incompatibilities with TornadoVM regarding the execution granularity and
their APIs, while on the TornadoVM side, we provided support for Plain Old Java Object (POJO) types.

The changes that we performed in Apache Flink wereoallded on thelTask Managecomponent. To
avoid the enforcement of using TornadoVM API to Flink developers, we implemented skeleton classes for
map and reduce operators. Hence, we utilize the ASM frameWtork per f orm “ byt ecode

1 https:/fasm.ow2.io
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and patch thefunction call of the FlinkJser Defined FunctionJOF into one of the classes provided at
runtime.

Listing 6 presents theTornadoMapskeleton class whh is used formap transformations. This class
includes the equivalent functions that would be called using the TornadoVM API, as presehigthin
1

public class TornadoMap {
public  MiddleMap mdm;
public TornadoMap MiddleMap mdm) {
this .mdm = mdm;

}
public wvoid map (int [] in, int [] out){
for (@Parallel int i= 0;i< In.length; i++) {
out[il]=  mdm.mymapintint( in [i]);
}

LISTINGS. SXELETON CLASS B#P OPERATORS

The MiddleMap class is an intermediate abstract class that contains signatures similar to the signatures
of the Flink AR but with the corresponding primitive inputs and the results returned to Object types. In
case of Flink functions that use input or output with the Tuple Object type, this type is maintained in the
skeleton functions, as it is handled internally by tleeneidoVMJust In TimeJ(T) compiler.

public abstract MiddleMap {
public abstract int myMapintint (int i) ;

public abstract int myMapintDouble (double d);

public abstract Tuple2 myMapTuple2Tuple2(Tuple2t) ;

LISTING/. EXAMPLE METHOD SIGNATURESWARSKELETON CLASS

Finally, theMapASMSkeletorlass, extends th#iddleMapclass and is used to perform the bytecode
manipulation via the ASM framework.

public class MapASMSkeleton extends MiddleMap {
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public int myMaplintint (int i) {

return O;

}

public int myMaplintDouble (double d) {
return O;

}

public Tuple2 myMapTuple2Tuple2(Tuple2 t) {
return null ;

LISTING3. EXAMPLE METHOD SIGNATURESASIMMAP SKELETON CLASS

We have two classes that extend tMapASMSkeletorlass to implement the bytecode manipulation
from Flink to TornadoVM. The first class calle@mineUDFexamineshe Flink user function and analyzes
the input and output types. Then, based tire data types, the second cla3sansformUDIpatches the
bytecode of the skeleton function with the bytecode of the Flink UDF function.

Essentially, if we were to pass the nfapction presented in the previous section to tegamineUDEnd
TransformUDFRunctions, the bytecode of thmyMaplntintfunction in theMapASMSkeletonlass would
be the equivalent bytecode to theethod shownin Listing9.

public int myMaplintint (int 1) {
return  mag);

LISTIN®. EXAMPLEMAPMETHOD

After the transformation, ASM returns the alterddapASMSkeletortlass in bytes. The class is then
loaded and assigned to MiddleMap variable. Finally, this variable is passed to the constructor of the
TornadoMap

/I Examine the user function to extract i nformation about the types

ExamineUDF.FlinkClassVisitor flinkVisit = new

ExamineUDFEFlinkClassVisitor();

ClassReader flinkClassReader = new

ClassReader (TransformUDF.mapUserClassName);
flinkClassReader.accept(flinkVisit, 0);

/[ store this information so that it can be accessed by the TransformUDF

class

setTypeVariablesMap();
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/[ patch udf into the appropriate MapASMSkeleton

ClassReader readerMap = new

ClassReader ( "org.apache.flink.runtim e.asm.map.MapASMSkeleton");
ClassWriter writerMap = new ClassWriter (readerMap,

ClassWriter. COMPUTE_MAXS);
writerMap.visitField(Opcodes.ACC_PUBLIC, "udf* , desc, null ,

null ).visitEnd();

TransformUDF.MapClassAdapter adapterMap = new
TransformUDF.MapdassAdapter(writerMap);
readerMap.accept(adapterMap, ClassReader.EXPAND_ FRAMES);

/I Load class generated
byte[] b = writerMap.toByteArray();

AsmClassLoader loader =  new AsmClassLoader();
Class<?> clazzMap =
loader.defineClass( "org.apache.flink.run time.asm.map.MapASMSkeleton" , b);

MiddleMap md = (MiddleMap) clazzMap. new Instance ();
TornadoMap msk = new TornadoMap(md);

LISTINGLO. GCODE EXAMPLE FOR ADAPTIRGEMKOPERATOR TEDRNAD& M DYNAMICALLY VASM.

In order to change the granularity of the execution, we follow the same model as in the previous version
of the integration; at first, we collect all the data stored in the deployed tasks, ubtiitaSinkask is sent

to the Task ManagerAt this momentthe TornadoVM execution starts. The only difference with the first
version of the integration lies in the way that we handle the input data wheataSourceask is received.

In this case, we access the data in their byte form, right before the execuftithie deserialization phase

in the Task ManagerAs the serialized byte streams contannumber ofextra header bytes and
considering that the endianness in Flink is different from that in TornadoVM, we create a new byte buffer
which stores the data stemns from Flink in the TornadoVM endianness. Finally, similarly to the first
version, upon the deployment of tHeataSinkask, we use all the information stored in thiask Manager

to perform the computation via TornadoVNListing11 presents an outline of the process described
above.

public class Task {

new TaskSchedule( "s0" )
task ("t0" , Multiplication::tmap, in, out)
flinkData(inBytes, numOfResultBytes)
.StreamOut (out)
.execute () ;

Pagel4of 54

D6.3 Prototype v2 & Intermediate
Evaluation



http://www.e2data.eu/

‘ E°Data www.e2data.eu

LISTINGL1. EXAMPLE OF INVOKINGRNADYM VIAFLINK IN INTEGRATIOR.0Q.

The only difference between the code presentedLiisting11 and the one inListing7, is that the
TaskSchedule hasflinkDatafunction, which is used to pass the input bytes and the size of bytes that is
anticipated to return as a result. This information is utilized by internal TornadoVM array wrdgpers
write and read the bytes of data to and from the heterogenous device, respectively.

After the execution of the computation on the heterogeneous device, the endianness of the array that
stores the results is changed to follow the Flink endianness aerddtta is returned back to the
serialization buffers of Flink, which distributes them to the cluster.

Regarding the object handling in TornadoVM we extended the TornadoVM JIT compiler with new
compilation phases that replace the data access to POJO obyjébtshe access to the corresponding
primitive arrays that store the data.

For example, assuming that the input object typeTigple2<integer, Tuple2<Double,Doubletie
execution is as follows. At first, we create Flinka new array obyte primitive type which contaisthe
raw bytes of each field of the input objects. In this example, each element in the input objeciesgop
to 20 bytes in the correspondirayte array, including 4 bytes for thategerobjectand8 bytes for each
of the Double fields in the nestedTuple2 object. Thus, the total size of the byte array would be
20*numberOfTuples.

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19
0 [0 [0 |13 |61 [10 [-41 |-83 [112 |44 |-64 |-31 |122 |20 |-B2 [71 (1 |72 |-64

20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39
2 |0 |0 |0 |72 |-31 |122 |20 |-B2 |-57 |54 |-64 |-51 |-52 [-52 |-52 |-52 |-116 |66 | 64

HGUREL. EXAMPLENPUTOUTPUTINDEXARRAY

Then, we introduced new compilation phases to replace the access to the fieldaneittess to the raw
data of the field. The new phases apply modi fi ce
intermediate representation (IR) graph. For thieason,we created a compiler phase that identifies the
LoadFieldNoderodes, which are used for loading theplefield from the array. These nodes are then
replaced by nevLoadindexedNodes new node is added for evefyplefield that we need to loads a

primitive type. Then, we remove all unnecessary nodes, sudioadFieldNodesFixedGuardNodes,
Box/Unboxnodes. A similar process is followed when the return type of the function is a Tuple. In this
case, we replace the singktorelndexedNodaodeof type Object, with sever&@torelndexedNode®ach

for every field in the returned Tuple.

If all fields in theTupleobjects have the same type, then in order to access each field it is sufficient to set
the index ofLoadIndexedNoder StorelndexedNodaccording to the following formula: i*totalFields +
numberOfField. For example, if the inphiplewas aTuple3<integer, Integer, Integerthen:
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-> the index for thd.oadindexedNodehich replaced LoadField 0 would be: i*3
-> the index for thd.oadindexedNodehich replaced LoadField 1 would be: i*3 + 1
-> the index for thd.oadindexedNodehich replaced LoadField 2 would be: i*3 + 2

In this case, the compiler will replat®adFiellodeswith ReadNodeswhich will be adjusted with the
appropriate offses.

However, if the types of the fields in a Tuple are different, this indexing is not sufficient to correctly read
the data of each field. The reason is that the offsets for eRehdMvde are calculated by the compiler
based on the assumption that the array is homogeneous. Therefore, if we had as input/output data the
array inFigurel, the Read/Writenode for field O (Integer) would read the first four bytes (positior3) O

and subsequently thRead/Writenode for field 1 (Double) would assume that in the previous position of
the array was another double valuEherefore, thesecond node would read/write bytes® and for field

2 the same assumption would be made, so the bytes that would be read/write would be by 16

Thus, we created a new compiler phase to calculate the correct offsets. The offsets RédldéNrite
nodes are calculated as follows:

Tuple2:
Read offset for F@clAddress + i*sizeOf(F1)
Read offset for FloclAddress + (sizeOf(F0) + i*sizeOf(F1)
Tuple3:
Read offset for F@clAddress + (sizeOf(F1) + sizeOf(F2)*i)
Read offset for FloclAddress + (siZ#(FO0) + (sizeOf(F0) + size Of(F2))*i)
Read offset for F2clAddress + (sizeOf(fieldO) + sizeOf(field1) + (sizeOf(field0) + sizeOf(field1)*i)
Tuple4:
Read offset for F@clAddress + (sizeOf(field1) + sizeOf(field2) +
sizeOf(field3))*i
Readoffset for F1.oclAddress + (sizeOf(field0) + (sizeOf(field0) +
sizeOf(field2) + field3)*i)
Read offset for F2oclAddress + (sizeOf(fieldO) + sizeOf(fieldl) + (sizeOf(field3) + sizeOf(field0) +
sizeOf(field1)*i)
Read offset for F3pclAddress + {eOf(fieldO) + sizeOf(fieldl) + sizeOf(field2) + (sizeOf(fieldO) +
sizeOf(fieldl) + sizeOf(field2))*i)

Finally, we created one more compiler phase to support a secondary interface of map functions named
RichMapFunctionsThe distinction between the map functions that implement tRe&ehMapFunction
interface and the ones that implement thdapFunctioninterface is that the former have an extra input
dataset, which is broadcasted to other parallel instances of a Flink oper®ur compiler phase supports
RichMapFunctions functions, ®}iminating nodes related to collections (eldethodCallTarget Nodes
Invoke Nodeegtc.) and changing the limit of tHeoop PhiNodérom Invoke#Collection.size to a constant
node that contans the size of the dataset.
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1.2. E2Datgv2) Use Case Applications
Health AnalyticsEXUS has already developed a hospital readmission risk prediction algorithm, in order
to reduce the number of patients that are readmitted in a hospital within 30 days afédritiitial release.
In order to improve the predictive capability of the hospital readmission risk prediction algorithm in the
E2Data project, a dataset that represents 10 years (4833B) of clinical care at 130 US hospitals will be
used. This datasencludes over 50 features for each patient such as race, gender, age, admission type,
spending time in hospital, medication, etc.
Furthermore, a data preprocessing step has been performed in order to handle missing values, inaccurate
and inconsistent valuesluplicates, etc. Also, a feature selection step using regression models in order to
extract the most important information from the dataset.

After preprocessing, a supervised machine learning model should be selected. The selection of the
algorithm haswo key features that should been taking into consideration:

1. Which model fits better in the distribution of given data?
2. Which model can be parallelized in order to cover the E2DATA requirements?

Regarding those requirements the algorithm that has been usdtle Logistic Regression using batch
Gradient Descent for parameters optimization. This algorithm gets 2 arrays as input:

e X: A 2D array with size the number of patien
e y: A 1D array which are the real valueseddmission type (1 for readmitted patient and 0 for not
readmitted patient)

The output is an 1D array with size the numb
parameters.

The logistic regression algorithm is as follows:
0 € "QQIQINMmMY N, &
"'0¢ QO DX "G o Qi i
01 QO5MNG £ & @ AN @ Qb ii "0 OO 1B 0 W
6 Oa OOSEIN DG dé (BOE O OGUE DR Q 0
On o0 QeI i "WAIDT O'QODE axhE QK O ER 0

In the context of E2Dataye exploitthe underlying Apache Flink and Tornado APIs. Theh&paink will

be used for data partitioimg and paralleliation of the steps of the algorithm using the MapReduce
approach.Tornado VM will be used in order to parallelize the functionalities of the algorithm such as
making parallel matrioperations.

Natural Language Processing:ch e mai n NLP applications to eval ua
towards the actual exploitation aradoptionof E2Data results. These are:

e Sentiment and Cause analysis on tourism industry détaviews, tvitter messages, web articles,
etc.). We name it “Sentitour” and it is an ap;f
to process travel reviews and opiniomsreal time The processing of such information will be used
to extrapolate useful kowledge and alerts about interesting opinions, their polarity and the reason
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that is causing the positive or negative statement, as classified within several categories (i.e. cost,
cleanliness, etc.).

A key success factor of the application is toabée torespond into large amounts of data, as quickly
as possible. The ability to process at least 250 mesgagyesecond and 2B of yearly data will signal
thesystem' s adequacy to become ¢ omp elhtimgalening) enou

Thedatasetsused in theevaluation include:
0 Review texts for hotels, destinations, and tourism services in general
o Twitter messages commenting tourism services
0 Articles

e Address Cleaning & Identification Address resolutionfor mail deliveryservices,is the second
application that will demonstrate the gains of acceleration. The objective is to analyze the input
address and find its point in a GIS system. The applichtism specialeed for performance because
it is used in different phasex an automatic system with specific performance requirements. The rate
must be sustained above 20 addresses/sec in order to support the required quality of service. The
current application uses a strict (small) set of rules in order to keep high ratéise new updated
Tornadd/M version, we expect to expand the functionalitya richer set of resolution rules and use
machine learning algorithms utilizing the historic data of thail deliveryorganization.

Green BuildingsA large 10T infrastructure igstalled in educational buildings in Greece, Italy and Sweden,
currently totaling 1.239 sensing endpoints and growing, expected to reach over 1.300 points by the end
of the project. This infrastructure provides energy consumptielated data for each $wol, as well as
outdoor and indoor environmental data for a number of classrooms in each building. In its current setup,
this deployment produces daily over 400 MB of data, resulting in a yearly data volume of over 140 GB.

In this context, sensorsomprising the E2Data loT infrastructure generate, handle, transfer and store a
huge amount of data, which is difficult to be processed in an efficient manner using current platforms and
techniques. More specifically, big data analysis algorithms and tgebs such as clustering, regression,
classification and pattern recognition will be deployed in E2Data in order to enable superior
computational efficiency, in order to enable processing pipelines that will allowtirralmonitoring of a
certain buildng s ener gy behavior.

To meet the requirements of the current version of the E2Data framework integration we have provided
an Apache Flink implementation utilizing the DataSet API of the framework for the Analytics Engine of the
Green Buildings UC. The soairccode is availableunder t h e project’ sini Git
https://github.com/E2Data/gbanalyticsflink.
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2. E2Data Deployment

In this section, we firstly describe in brief the software componergglizing the E2Data deployment
environment and afterwards we provide technical details of the x86/Aadh64based testbeds utilized
by the E2Data software stack.

2.1 Deployment Environment
The deployment of the E2Data software stack relies on the deploywfetiie Apache Flink Framework
over an Apache Hadoop YARN clug8irand the TornadoVM framework. Apache Hadoop YARN is a
cluster resource management framework.altows to run various distributed applications on top of a
cluster. Flink runs on YARN next to other applications. Users do not have to setup or install anything if
there is already a YARN setup. A prerequisite of a Hadoop YARN deployment is theiamstadid
configuration of Hadoop DFS for the needs of the Hadoop YARN cluster operations. Hence, a proper HDFS
(Hadoop Distributed File System) or another distributed file system supported by Hadosfalkedon
the cluster.

In a nutshellregarding theoperation of Flink over a YARN cluster, the YARN client needs to access the
Hadoop configuration to connect to the YARBsourceManager(RM)and HDFS. When starting a new
Flink YARN session, the client first checks if the requested respureasory andvirtual cores for the
ApplicationMaster(AM) are available. After that, it uploads #ARfile that contains Flink and the
configuration to HDS. The next step for the client is to request a YARN container to staftMh&ince

the client registered the configuration ariARfile as a resource for the container, the NodeManager of
YARN running on that particular machine will take care of pragatie container (e.g. downloading the
files). Once tIs isfinished, the (AM}tarts.

The JobManager and AM are running in the same container. Once they successfully start, the AM knows
the address of the JobManager (its own host) and a new Flink coafignrfile is generated for the
TaskManagers (so that they can connect to the JobManager). The file is also uploaded to HDFS.
Additionall vy, the AM container a | tlkabthe sYARNvcede ist h e
allocating are ephemeral ptw. This allows users to execute multiple Flink YARN sessions in parallel.

After that, the AM starts allocating the JARNt ai
file and the modified configuration from the HDFS. Once these steps arpletu, Flink is set up and
ready to accept Jobs.

Toorchestrae and execut benchmarkon the E2Datheterogeneousystems with hardwardependent
parameters that have to be tuned and spawn a diverse setooffiguration fileswe utilize the Peel
Experimat Execution Frameworf4] Pee| a framework to define, execute, analyze, and share
experimentsenables the transparent specification of benchmarkiraykloads and system configuration
parameters. It orchestrates the systems involved and automatically runs and collects all associated logs
of experiments.Peelcurrently supports Apache HDFS, Hadaom Flinkand can easily be extended to
include further systems

Apart from the current integrated version of Apache Flink with TornadoVM already discusSedtion
1.1, for the baseline results presented afterwards in this document we use plain Apache Flink over Apache
YARN and Or acl e’ s saf thdde soffivéwrecomnprneriate summarized idablel.
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TABLEL. E2DATABASELINDEPLOYMENSOFTWARKEOMPONENTS

Name Version Description

Apache Flink 191 Big Data Framework

Hadoop Yarn 3.1.1 Cluster Resource Manageme
Framework

h NI} Of SQa W+ a 1.8 Execution Engine

Peel 11 Peel  Experiment Executiol
Framework

2.2 Testbeds

In thissectionwe describe the current status and the specification details of the two testbeds of E2Data,
i.e. theAarch64based provided by the KALEAO partner and the x86 based provided by the ICCS partner.

2.2.1KMAXAarch64Testbed
The KALEAO (KMAX) testbed consists of +ooiié ARM Processors. Four Identical Blade systems have
been made available for the testbed. Each of the blades consists of 64 Big Cores and 64 Little cores. The
details of the KALEAO (KMAX) are describdaite2.

TABLE2. KALEAQKMAX)AARCISA TESTBESPECIFICATIONS
Machine ID Number of Big Cores Little Cores RAM (GB)

Type Processors

Blade 3 16 4x CortexA57 4x CortexA63 4
@2.1Ghz @1.5Ghz

Blade 4 16 4% CortexA 4x CortexA63 4
57@2.1Ghz @1.5Ghz

Blade 5 16 4x CortexAb7 4x CortexA63 4
@2.2Ghz @1.5Ghz

Blade 6 16 4x CortexAb7 4x CortexA63 4
@2.1Ghz @1.5Ghz

To add heterogeneity to the cluster additional hardware is also available, that consists cfdfRIGIPUs.
The details of these Hardware Components sttewnbelow inTable3 and Table4.
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Machine Type ID

TABLE3. FPGABOARDSPECIFICATIONS

FPGA'ype

FPGAHardware 1 Xilinx* Ul t r a s ¢ &dreed&B DDR4ita IS 512MB DDR4

TABLEL. MALIGPUBOARDSPECIFICATIONS

Machine ID Arm Mali U Number Little Cores

Type Processors

of Big Cores

Rock 960 7 Mali T860MP4 2x CortexA72  4xCortexA53 4
Hikey 960 8 Mali G71 MP8 4x CortexA73  4x Cortex”/63 3
Hikey 960 9 Mali G71 MP8 4x CortexA73  4x Cortex/3 3
Hikey 960 10 Mali G71 MP8 4x CortexA73  4x CortexA3 3
Hikey 960 11 Mali G71 MP8 4x CortexA73  4x CortexA3 3
Hikey 960 12 Mali G71 MP8 4x CortexA73  4x CortexA3 3

The above set of hardwamponentsform the KALEAGKMAX}estbed cluster.

2.2.2I1CCS x86 Testbed

The ICCS testbed consists of matire physical machines, some of which have also attached a set of
hardware accelerators. For the time being, only GPU accelerators have been installed. The detailed

specifications are presented irableb.

TABLES. ICC&X86 QLUSTERPECIFICATIONS

Host Process Sockets Cores Threads NUMA RAM HW
or Model per per core nodes (GB) Accelerator
socket S
silverl Intel(R) 2 10 2 2 256 2 x Tesla
Xeon(R) V100-
Silver SXM2-
4114 32GB,
CPU @ 1 X
2.20GHz GeForce
GTX 1060
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] 6GB
IntelR) 2 14 2 2 256 1 X
Xeon(R) GeForce
Gold GTX 1060
5120 6GB,
CPU @ 1 x Radeon
2.20GHz RX 580
4GB
IntelR) 2 16 2 2 314 -
Xeon(R)
Gold
5218T
CPU @
2.10GHz
cognito Intel(R) 1 4 2 1 64 1 X
Core(TM GeForce
) i7- GTX 1060
4820K 6GB
@
3.70GHz
Intel(R) 1 6 2 1 32 1 X
Core(TM GeForce
) i7-8700 GTX 1060
@ 6GB,
3.20GHz 1 x UHD
Graphics
630,
1 x Radeon
RX 580
4GB
termi7 Intel(R) 2 6 2 2 96 -
Xeon(R)
CPU
E5645
@
2.40GHz
termi8 Intel(R) 2 6 2 2 96 -
Xeon(R)
CPU
E5645
@
2.40GHz
termi9 Intel(R) 2 6 2 2 96 -
Xeon(R)
CPU
E5645
@
2.40GHz
- Intel(R) 2 6 2 2 96 -
Xeon(R)
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CPU

E5645

@

2.40GHz

termill Intel(R) 2 8 2 2 64 -

Xeon(R)

CPU E5-

2650 O

@

2.00GHz

termil2 Intel(R) 2 8 2 2 64 -

Xeon(R)

CPU E5-

2650 O

@

2.00GHz

Regarding power consumption monitoring capabilities on the ICCS x86 cluster the ICCS infrastructure
provides a Power Distribution Unit (PDU) tbe E2Data project. The provided hardware is an APC
metered-by-outlet Rack PDU. The exact model is AP8481.

The PDU is reachable through the network, at a public IP address. The PDU features a total of 24 outlets.
All physical nodes that have been dedicatedthe E2Data project are plugged to these outldts.
addition, three pairs of physical nodes among the ones provided share their PSUs with one another.

The PDU supports three distinct methods for monitoring power statistics of its outlets: it seneds @lw
a Telnet/SSH console, and it also acts as an SNMPv3 agent. ICCS makes all these access methods availa
to the E2Data partners for the duration of the project.

To enable power consumption metering capabilities on the testing framework we haveogedeh
system extension for the Peel Framework utilizing the PDU telnet API capable to compute the average
power consumption during the execution of an experiment of the nodes participating in this experiment
run.

In Figure2 and Figure3 we present power consumption results from the x86 ICCS cluster for the Green
Buildings UC applicaticand the KMeans algorithm respectivelyThe results refer to the average power
consumption in Watmeasured from the nodes participating in each experiment execuwtioite scaling

up and scaling out the resources of the cluster.
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Green Buildings (Large Dataset) on ICCS cluster
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As shown irboth figures as the number of worker nodes and task slots scale, the power consumption
also increases. This trend is anticipated for all d@d benchamrking algorithmthat exhibit similar
scaling trends.
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3. Performance Evaluation Results

As already mentionedptensue reproducible results, we use the Peel Experiment Execution Framework
to execute our experiments. Peel allows us to package all the information related to a suite of experiments
in a secalled Peel bundle. These bundles are then installed on a testsysid executed automatically.

Peel captures performance information such as experiment runtime and system utilization mattigs.
Section we present performance evaluation resultsvietl-known benchmarking algorithms, such as K
Means and theUGs applications Finally, we present and discuss the v2.0 integration performance
evaluation results comparing the esid-end execution times of the-Kleans algorithm of version 2.0
against version 1.0.

3.1 E2Data Platform Performance Evaluation
In the first part ofthe provided performance results we utilize standard benchmarking algorithms to
extract results of the version 2 of the E2Data big data framework, i.e. Apache Flink. We evaluate Apache
Flink version 1.9.1 utlizing the -Means algorithm Peel Bundle avéila in
https://github.com/E2Data/e2datgpeelexample over both the x86 andAarch64clusters. Below we
describe the evaluation methodology, the benchmarking algorithm and we present and discuss the
extracted performance evaluation results.

3.1.1 Methodology
We perform a combined scalmut/scaleup experimenutilizing the Peel FrameworkVe vay the number
of workers to measure the influence of scaling out the cluster. In addition, we vary the number of task
slots per worker to measure the influence of scaling up the individual machines. We set the amount of
memory available for Flink Task Maeais to 75% of the physical system memory. This corresponds to the
default amount of memory reserved by Flink for each Task Manager running inside a YARN container.
Each worker functions both as a Flink Task Manager and an HDFS Data Node. We use thdRQiesaul
replication of 3.Table6 lists the software versions used for our experiments.

TABLES. PERFORMANCE/ALUATIONFRAMEWORISOFTWARKEONFIGIRATION

Flink 191
Hadoop 3.11
DStat 0.7.3

3.1.2 Benchmarking Algorithms
We useK-Means as an example of a machine learning algoritkileans is a welknown clustering
algorithm and is used as a basis for many machine learning tasks. Its input is a collection of points in an n
dimensional space and a collection of k centroids representing an initial clustering. The algorithm
iteratively refines the initial clustering by assigning each point to its nearest centroid and updating each
centroid by computing the mean of the points assigned to it. The algorithm typically runs to convergence
or for a fixed number of iterations. The output iidMeans are the final centroids and/or an assignment
of each point to their cluster (both results are equivalent).
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3.1.3 Datasets
TABLE/. K-MEANSBENCHMARKINALGORITHMOONFIGURATIQN

Description Used in experiment Size (MB) Datapoints

Generated dataset K-Means 700 60 million
For theK-Means experiment, we use an input file of about 700 MB, consisting of 60 million points with 2
dimensions and 64 initial clusters. We run each experiment three times and report the mediaa of
measured eneo-end runtime.

3.1.4 Results
We run theK-Meansexperiment on two clusters, the ICCS cluster and th&\Kcluster. We first detail
the ICCS experiment, and then tk&AXexperiment.

kmeans on iccs cluster

300 A

200 -

== T
100 4 I
-
i 2 4 8

Worker

Taskslots [l + 2+ 8

Runtime [seconds]

AGURHE. K-MEANSRESULTON ICCRLUSTER

ICCSWe scale the number of Flink TaskManagers (i.e., workers) from 1 to 8. For each scaling step, we
measure four task slot configurations, whereby we scale the number of task slots from 1 to 8. The number
of tasks slots determines how many tasktances can run in parallel on each Flink worker. We choose
the maximum number of task slots based on the number of vCPU cores (aka. hyperthreads) that the
machines support.

We observe a speedup when increasing the number of workers, and alsoimdreasing the number of

task slots. We note that the primary cause of the speedup is the total number of physical CPU cores,
because 1 worker with 4 slots is equally fast as 4 workers with 1 slot each. However, once we exceed the
number of physical CPU res at 8 slots per worker, we observe no further speedup over 4 slots (the
measurement variance for 8 workers and 8 slots is contained within the variance for 8 workers and 4 slots
Therefore 8 slots achieve no measured speedup over 4 slots).
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The maximum ehieved speedup is sublinear, at 4.4x. This can be explained by the high initialization costs
of Flink. We would thus expect that the speedup increases for larger inputs.

kmeans on kmax cluster
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HGURB. K-MEANSRESULTON KMAXQLUSTER

KMAX We scaléhe number of workers from 1 to 16, and the number of task slots from 1 to 4. Note that
the ARM CPUs do not support hyperthreading, thus each task slot corresponds to a physical CPU core.

Like in the ICCS experiment, we see that the main reason for thelgpds the number of CPU cores.
One worker with four slots has the same runtime as four workers with one slot each. Therefore, this
benchmark is not bottlenecked by disk or network bandwidth.

On a single node, we observe a néiaear speedup of 3.2x whestaling task slots.

When scaling to multiple nodes, we notice that the runtime decreases from 1 to 8 to nodes. The maximum
speedup is 8.1 times. However, from 8 to 16 nodes, we observe no further speedup. This indicates that
other overheads dominate theuntime, such as the Flink initialization time, and the network
communication for the intemworker synchronization that occurs at the end of eviiyleans iteration.

3.2 Use Case Applications Performance Evaluation
In this part we discuss the implementation tégements of each UC application and the methodology we
used to achieve uniformity, replicability and reproducibility for each UC performance evaluation. We also
define the datasets utilized for the performance evaluation of the UCs implementation on épéiok
as well as we present and discuss the performance results extracted from each UC.

3.2.1 Methodology
As alreadydescribedwe are using the Peel testing framewg#q for the performance evaluation. Peel
operates on a bundle which packages together the configuration data, datasets, and programs required
for the execution of a particular set of experimentserde, each UC implementatigrovidesa Peel
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Bundle. The structure of a peel Bundle includes the followingléopl elements: the workload
applications, the environment configurations and experiments definitions, the data generators, the static
datasetsthe archived system binaries, the Peel libraries and dependeratidghe utility scripts and files
(more details can be found i@] Hence, each UC has created @IFgundle including the UC application
sourcecode, the environment configuration and the experimentsR&&ldefinitions, the static datasets

or the data generatorsand any potential extensions of the Peel framework capabilities. More details on
how to huild a Peel Bundle can lbeund in https://github.com/E2Data/peehowto.

3.2.2 Health Analytics
The healthanalyticsUChas been implemented in Java using three different approaches:

1. Java vanillgsinglethreaded)
2. Java using TornadoVM.
3. Java using Apache Flink.

The Java vanilla and Java using TornadoVM have been implemented in the same component and the user
can choose which approach wants to be executed by passing the appropriateaigument. The Java

using Apache Flink has been implemented as a different component by using tigetDeRdof the Hink
framework. The repository of these components can be found here:
https://github.com/E2Data/exus_use_case

Furthermore, for the Apache Flink version there is another repository which is using the peel framework
in order to produce the benchmarks results in ICCS<aidXclusters. The repository for theeel bundle
of healthUCis here https://github.com/E2Data/healthUeel

The prerequisites for the health analytio€are:
Java 8
Maven 3.6.0
TornadoVM
Apache Flink 1.9.1
Hadoop 3.2.1

In both cases (TornadoVM and Apaétiiek), the user should pass some arguments to the system in order
to run the logistic regression algorithm. These arguments are:

Number of iterations - Kk
Learning rate - a

Regul arization parameter .
Number of features - n

Which of the 2 datasgsmall/lb g) t o use - d
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The number of iteratioa (k) isa crucial hyperparameter becausesignificantlyaffects theperformance
of the algorithm in terms of execution time

The output results for Java, TornadoVM and Apache Flinklanticaland contain:
1. executon times
2. evaluation metrics results, such as precision, reaalll F1 measuraents

For Java vanilla and TornadoVM the results are printed in the console log of the application, #imle in
the results are saved in a file.

For this deliverable, thenain results that will be described and analyzed are based on execution time of
the training of logistic regression algorithm.

In Sction3.2.2.1we describe the datasets that are used for the health analjiCaind inSection3.2.2.2
we present all the benchmark results for each of the implemented approaches.

3.2.2.1 Datasets
For thisUCwe usedtwo different sizes of input datasets. The first one is a small dataset that contains
around 80K rows and 82 features, while the other onel&@erdataset which contains around 2M rows
and 82 features. The size of the snuitaset is 147MB, while the size of tle@gedataset is 4.6GB.

Thelargedataset is a byproduct of the small dataset in order to better evaluate TornadoVM and Apache
Hink in terms of execution time with Java vanilla. For the data synthesis the SMOiithral{fs] has been

used in order to increase the size of the datasetn efficient way and keep as much as possible the same
distribution with the small dataset.

3.2.2.2 Results
Regarding the benchmark results, the execution tim#hefJava implementation of the logistic regression
algorithm will be compared with the execution tisef those onApache Flink and TornadoVM. For each
implementation, the testhiave beemerformed onthe ICCS and KMAX clusters.

Below are the initial results from the small datasatound80K rows 146MB) andargedataset(around
2M rows- 4.6GB) The Java and TornadoVM results have been performed in the UNIMAN server and the
ApacheHink resuts are performed to the ICCS cluster.

TABLES. INITIAL RESULTS BfUS USE CASE RBRA TORNADY M, APACHHELINK(USING ONLY ONE JOB MANAGER
AND1,3AND10TASK SLOJBOR THE SMALL DATASET

Kernel Flink with 1 Flink with 3 Java Tornado Flink with 10
/Number CPU core CPU cores CPU cores
of
Iterations
50 15 sec 8 sec 3.43 sec 1.11 sec 4 sec
100 26 sec 13 sec 7 sec 1.62 sec 7 sec
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200 49 sec 24 sec 13.92 sec 2.21 sec 10 sec
400 92 sec 40 sec 27.56 sec 3.46 sec 15 sec
1000 231 sec 96 sec 70 sec 7 sec 33 sec

TABLED. INITIAL RESULTS BfUS USE CASE RBRA TORNADY M, APACHHELINK(USING ONLY ONE JOB MANAGER
AND10TASK SLOYBOR THE BIG DATASET

Kernel Flink with 1 Flink with 3 Java Tornado Flink with 10

CPU core CPU cores CPU cores
/Number

of
Iterations

1000 - - 45 min 3-4 minutes 17 minutes

Below are the results of the small dataset with 1000 iterations and the results datpedataset using
10 iterationsrunning on Apache Flink

Ir on iccs cluster
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Iriccs. scal eT out on iccs cluster
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Please note thain the execution time of Javand Tornad®M only the training time of the model is
accounted However, in thélink versionthe time to read the datasefrom a binary formats also counted
in the execution timeThe impact of this overhead depends on the number of iterationskigsre7
shows the scale outexperiments performwell on the big dataset.Performance increases with the
number of nodes. Increasing the number of task slots improves performancefaprttask slotsOn the
other hand, in the small datasescalability is negatively affected

3.2.3 Natural Language Processing
NLP kernels work on dictionaries. A dictionary can be a set of words or phrases in text (UTF16 character)
or compiled binary format. The compiled foat can contairindicesfor quick recognition of a word as
well as information related with the worde.g., morphological information as lemma, stem, Part Of
Speech (POS), etc., syntactic information as properties of accompanied words on left or rigiatjsguk
phrases, etc., semantic information as sentiment, synonyms, antonyms, etc. and statistical information as
frequencies per document and corpus, TFIDF scores, etc.

The kernels are classified in two classes,

e the ones that work only on dictionariestiwout any extra input (clustering kernels) and
e the ones that implement a function on streamed input using the dictionaries (fuzzy matching
kernels)

Kernels are also classified on the type of dictionary they use. We have the Word Distance Kernels (WDK)
where the lexicon is a list of words (or phrases), the simple Directed Acyclic Word Graphs Kernels (DAWGK)
where the dictionary is a binary compressed graph data structure storing words and used for fuzzy
matching and the Compressed Trie Kernels (CTK) where tire indexes from words to any useful
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information. Compressed Tries -{@es) havea graph structure similar to DAWG permitting fuzzy
matching functionality on words they store.

The kernels implemented are:

* WDK- Levenshtein distance used fil@xicographic ranking word of the dictionary with an input word.
The kernel outputs the distances of the dictionary word with the input word.

* K-Means clustering is using the Euclidean distance between the documents of the dataset. The
algorithmtakes as input a-Crie representation of the dataset and the parameter Kirig holds the
index from words to the documents they appear as well as the frequencies.

* Hierarchical clustering is using Cosine similarity between documents. The inputasit@é&3rie that
is used in KMeans clustering. The ranking now is based on the angles between documents. Each
document is represented as a vector with dimension of the vocabulary size used in the dataset and
values the TFIDF scores of the word.

« BM25 kerrel implementa search engine function which takes as input a phrase (sequence of words)
and returns the most relative documents in the dataset. BM25 is a variation of TFIDF algorithm used
for indexing and searching document collections.

The common functioality of all kernelsncludesthe configuration to run the algorithm eithesn the JVM
without acceleration, run it using TornadoVihd run it both in JVM and TornadoVM and compare the
results, the times and the acceleration rate.

Our first set of expements were for the current version of the NLP kernels and aimed to showcase GPU
speedup with TornadoVM on NLP kernels execution, within the following runs:

A Execute lexicographical ranking kernel with two different dictionaries (person names, spelling
lexicon)

A Execute two clustering algorithms (HierarchicaM&ans) on a corpus of tweets

There were cases where the Tornado could not produce a correct kernel due to the complex flow of the
kernel function. In theseaseswe modified the kernel code manuallp@ used the prebuilt functionality

of Tornado in order to run the kernel from Java code. The Java classes that implement the kernel
algorithms offer the configuration to use either the prebuilt kernel or the Tornado produced kernel code.

The next two setsf experiments show the performance behavior after the integration of the kernels with
Flink, on a local cluster setup and on ICCS cluster, for:

A lexicographical ranking kernel

A K-Means clustering algorithm
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3.2.3.1 Datasets

For the initial testing of th&ernel algorithms we use open datasets on which we apply the code kernels
in both Java and Tornado versions.

For the Word Distance Kernel (Levenshtein) we use public domain lexiconthgdvioby Project6] In
detail, wetested different types and sizes of lexicons, e.g.

A Names.txt:159,624 Mostommonnamesused in the United States ar@reat Britain

A Single.txt:354,984 Single ords excluding proper nouns, acronyms, compound words and
phrasesput includingarchaicwords and significantariant spellings

For the test of clustering and search engine functions we used datasets from Kdggpecificallywe
used

A The FIFA World Cup 2018 Twegtgs://www.kaggle.com/rqupta09/worlecup-2018tweets
a random collection of 530K tweets.

A Wine reviewslerivedfrom WineEnthusiast during the week of June 15th, 2017. The data set
contain 150K of wine reviewstps://www.kaggle.com/zynicide/wingeviews

A Russian Troll Tweets. 3Mtps://www.kaggle.com/fivethirtyeight/russiasiroll-tweets

The next phase of our evaluation utilizdatasets that are related to the NLP applications treduire
acceleration andnclude:

e Hotel and destination reviews: The dataseseddemonstrate the functionality of the application
and specifically the performance characteristics and acceleration gain will be open datasets from
Kaggle

o https:/mww.kaggle.com/jiashenliu/515kotel-reviewsdata-in-europe

o https://www.kaggle.com/datafiniti/hotelreviews

o https:/mww.kaggle.com/rtatman/deceptiveopinion-spamcorpus

e |ocation addressegperate ona labeled dataset (500KM addresses) antheir functionality is
tested against arqualy sized test (unlabeled) datasetround500K)

3.2.3.2 Results
Results using Tornado oalocal GPU setupThe evaluation of the new code kernels took placethe
following GPU setup

A GPU: GTX 970

A Numberof GPUs13
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A Memory: 4 GB

The performance gains we got running the kernels under Tornadekhrespect to thelVM version are
summarised in the tables below.

For the Levenshtein distance (WDK) we used two different sizes of vocabularies and input steasnas
in Tablel0.

TABLELO. LEVENSHTEISTANCEWDK)PARAMETERS

159624 100 4.4362x Vocabulary consists person names
159624 200 6.7354x Vocabulary consists of person nam
354984 100 7.5789x Vocabulary consists of English wor

(spelling checker dictionary)

354984 200 9.8268x Vocabulary consists of English wor
(spelling checker dictionary)

For Hierarchical classification using the cosine similarity metric (TFID&btaweedthe following results
(having ggram value equal to 0, which means plain words)

TABLELL HIERARCHICAL CLASSIFICATION USING THE COSINEYSMEIRRET FIDFRESULTS

38446 114239 13 28.2931x Documents are
tweet messages
aboutFIFA 2019

For KMeans clusteringwith the two kernels KMeansEvaluateGroupsfyl KMeansCalculateCentroids(),
the two kernel functions are running in different tasks in a loop using the same dataset as the previous
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hierarchical clustering kernel,engot the following results (having-gram value equal to 0, which means
plain words) for 32 rounds of the algorithm.

TABLEL2. NLPK-MEANSOLUSTERINKERNELBESULTS

38446 114239 13 9.7761x Documents are
tweet messages
about FIFA 2019

Results from integrated Flink version on local clust&or the Levenshtein distance (WDOKg cluster
setup and the resultare described below

A 1 CenO0S8, 1 JobManager, 2 TaskManagers, VM,ABGM
A 1 CenOS7, 4 TaskManagers, 3FAM
A 1 RedHat 7, 4 TaskManagers, 3EAM

TABLEL3. LEVENSHTEIN DICTIONARY \&#ZE59624NVORDSINPUT SI1ZE=10000WORDS.USTERETUP

1

6164000 1

10 1043000 5,90

For the KMeans clusteringthe evaluation of the code kernels integrated with Flim&s performedon
the following 3nodeclustersetup:

A 1 CenOS8, 1 JobManager, 0 TaskManagers, VM,BL&&AM
A 1Cen0S7, 4 TaskManagers, 3BGRAM

A 1 RedHat 7, 4 TaskManagsy 32@ RAM
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For the KMeans algorithmthe obtained results are illustrated iFablel4.

TABLEL4. NLPK-MEANS CLUSTERINGNKRESULTS

1 10 120 4 18715 11439 225500 1

8 10 120 4 18715 11439 91830 2,455625

8 10 500 0 38446 114239 11278737 1,650083

. 1 10 500 0 38446 114239 18610852 1
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Name Duration

Im19s
Im19s

Im 28s

o/e2data/projects/github/data/r %
gZdata/projects/githy 94ms

Im13s
HGURE. DURATION OFASKSERFORMING-MEANSOLUSTERINBIEASURED INDCAIQ USTER

Results from integrated Flink version on ICCS cludter. the Levenshtein algorithm with the use of Peel
bundleon the ICCS platform, the following performance results were prod({€igdire9). Three runs of

the same expement are performed, each one showing the scaling speedup as the number of nodes and
tasks per node is increasing.Higure9 we present the results for Levenshtein titimary size of 159.624
words, input size 10.000 words for all runs at different cluster setups of ICCS cluster.
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NLP Levenshtein on ICCS cluster
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TABLELS. LEVENSHTERICTIONAR®ZEV=159624NORDSINPUTSZES=10000VORDS SPEEDUP ANR OF
NODES IS INCREASINGIOR &1 USTER

Speedup (x)

1,00 1,93 3,47 5,49
1,00 1,85 3,10 4,32
1,00 1,65 2,55 3,25
1,00 1,52 2,00 2,18

TABLEL6. SPEEDUP ANR OFTASK PERIODE ISNCREASING

Speedup (x)
1,00 1,00 1,00 1,00
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1,80 1,73 1,61 1,42
3,44 2,94 2,52 2,03
5,79 4,55 3,34 2,29

TABLEL7. LEVENSHTEIN DICTIONARY \&1ZE59624VORDSINPUT SIZE=10000VORDS SPEEDUP AlNR OF
NODES ANFASKSPERNODE ARENCREASING AECELUSTER

Speedup (x)

1,00 1,93 3,47 5,49
1,80 ShJS 5,58 7,78
3,44 5,68 8,76 11,18
5,79 8,79 11,60 12,61

For KMeans clustering with the use of Pdalindleson the ICCS platform, the following performance
results were produced, when we run tladégorithm with the following parameters:

K=500, 1=20, V=11635, N=11439, where
K is the number of centroids (clusters)
I is the number of iterations
V is the vocabulary size (i.e. number of dimensions)
N is the number of documents (i.e. numberpafints)

Three runs of the same experiment are performed, each one showing the speedup as the number of nodes
and tasks per node is increasing as presentdednrel0.
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NLP K-Means on ICCS cluster
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TABLEL8. K-MEANS CLUSTERING Ka®00)=20,V=11635N=11439 SPEEDUP ASR OFNODES IS INCREASING
ONICCR®LUSTER

Speedup (x)

1,00 1,01 1,21 1,29

1,00 0,84 1,28 1,19

1,00 1,02 1,07 1,15

1,00 1,56 1,82 1,30

TABLEL9. K-MEANS CLUSTERING K&®00)=20,V=11635N=11439 SPEEDUP ANR OFTASKS PERODE IS

INCREASING dECELUSTER

Speedup (x)
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1,00
1,44
3,29

2,86

1,00
1,19
3,33

4,41

1,00
1,52
2,90

4,28

1,00
1,32
2,92

2,89

www.e2data.eu

TABLE20. K-MEANS CLUSTERING K31%00)=20,V=11635N=11439 SPEEDUP AlSR OANR OFNODES AND

TASKSPERNODE ARE INCREASINGIGE &L USTER

Speedup (x)

1,00

1,44

3,29

2,86

wSadzZ Ga FTNRY AydS3aNI (SR Fatha heyens@tSmaigdrithyl with the yse df v
p | aghdwo inFfigure 11 fare
produced.Three runs of the same experiment are performed, each one showing the speedup as the

Peel experiments

1,01

1,20

SHE

4,46

on

1,21

1,84

3,52

5,19

KMAX

1,29

1,70

3,77

3,73

number of nodes and tasks per node is increasing. As in the ICCS cluster Eageeld we present the

results for Levenshtein dictionary size of 159.624 words, input size 10.000 words for all runs at different

cluster setups othe KMAX cluster.
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D6.3 Prototype v2 & Intermediate

Page4lof 54


http://www.e2data.eu/

‘ EZDa ta www.e2data.eu

NLP Levenshtein on KMAX cluster
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TABLE21. LEVENSHTEIN DICTIONARY \&1ZE59624VORDSINPUT SIZE=10000VORDS SPEEDUP AlNR OF
NODES IS INCREASINGKIMAXCO_.USTER

Speedup (X)

1,00 1,76 3,07 5,53 9,29

1,00 1,79 2,96 5,07 7,35

1,00 1,74 2,88 4,66 6,68

TABLE22. LEVENSHTEIN DICTIONARY\$1ZE59624VORDSINPUT SIzE§=1000@VORDS SPEEDUP AR OFTASKS
PERNODE IS INCREASINGKIMAXO_USTER

Speedup (X)

1,00 1,00 1,00 1,00 1,00

1,90 1,93 1,83 1,74 1,50
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3,41 3,39 3,21 2,87 2,45

TABLE23. LEVENSHTEIN DICTIONARY \$#ZE59624VORDSINPUT SIZ8=10000VORDS SPEEDUP ANR OFNR OF
NODES ANFASKSERNODE ARE INCREASINGKIWMAXQ.USTER

Speedup (x)

1,00 1,76 3,07 5,55 9,29
1,90 3,39 5,62 9,63 13,96
3,41 5,95 9,84 15,89 22,81

For KMeans clustering with the use of Pdmindleson the KMAX platform, the following performance
results were produced, when we run the algorithm with the following parameters:

K=200, 1=20, V=11635, N=11439, where
K is the number of centroids (clustgrs
| is the number of iterations
V is the vocabulary size (i.e. number of dimensions)
N is the number of documents (i.e. number of points)

Three runs of the same experiment are performed, each one showing the speedup as the number of nodes
and tasks per noglis increasing as presentedrigurel?2.
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NLP K-Means on KMAX cluster
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TABLE24. K-MEANS CLUSTERING K3RR00J=20,V=11635N=11439 SPEEDUP ANR OANODES IS INCREASING

ONKMAXQLUSTER
Speedup (X)
1,00 1,24 1,40 1,37 1,41
1,00 1,36 1,31 1,63 1,48
1,00 1,02 1,37 1,63 1,49

TABLE25. K-MEANS CLUSTERING KeRR00)=20,V=11635N=11439 SPEEDUP AR OFTASKSPERNODE IS
INCREASING AfAMAXQ.USTER

Speedup (X)

1,00 1,00 1,00 1,00 1,00
1,24 1,36 1,17 1,48 1,31
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1,89 1,55 1,85 2,24 2,00

TABLE26. K-MEANS CLUSTERING K&%®00)=20,V=11635N=11439 SPEEDUP ASR OANR OFNODES AND
TASKSERNODE ARE INCREASINGKIWMAXCOLUSTER

Speedup (x)

1,00 1,24 1,40 1,37 1,41
1,24 1,70 1,63 2,02 1,84
1,89 1,93 2,59 3,07 2,82

3.2.4 Green Buildings
The Sparks Analytics Engine utilized in the Green Buildi@$s a processing engine that provides
analytics and storage for persisting extracted results. It receives events from multiple sensors and
executes aggregate operations on them. Sensors produce (periodically/asynchronously) events that are
sent to the Spdes Analytics Engine. These events are usually tuples of pairs: value and timestamp. All data
receivedis collected and forwarded to a queue. From theit,gets processed in real time by the
Processing Engine cluster. The computed analytics summaries are stored in a NoSQL database. Eact
Sparks Engine processing job has the ability to be easily modified, in order to accommodate aggregation
operations. The engineoasists of tasks responsible for a specific type of sensor. The chain of aggregators,
called process blocks in Sparks Analytics Engine, aggregate data for specific time intervals. Events reaching
the Analytics Engine message broker are processed consglguitiva timewindow manner calculating
aggregation results.

The implementation of the Green Buildings Analyti€shas been modified to meet the requirements of

the current status of the E2Data execution engine. Based on this, the processing enginerhaddgged

to a batch processing version utilizing the Apache Flink DataSet API while normally the Sparks Analytics
Engine operates on stream processing. To achieve efficient data analytics provision, the most crucial factor
data is the processing time afbatch of sensor data. Based on this the preliminary results presented here
evaluate the processing time that the Flink version of Sparks Analytics engine acHikge&reen
Buildings UC Peel Bundle used for the following evaluation results can bedonrdie r t he pr o]
repository:https://qgithub.com/E2Data/e2datagb-peel

3.2.4.1 Datasets
For the performance evaluation of the Apache Flink DataSet version of the Green Buildings Au@lytics
we are usig a synthetic input dataset simulating the processing of 7.200.000 data entries for a time
period of 60 minutes. In detailhe evaluated dataset contains input data from 2.000 sensors generating
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data with one-minute granularity per sensor for the time pged of one hour. The format of the Green
Buildings dataset is comma separated values with each value representing the unique identifier of the
sensor, the timestamp of the everdnd the actual value of the measurememtble27 summarizes the
Green Buildingdataset characteristics.

TABLE27. GREENBUILDING®DATASETHARACTERISTICS

Description Used in experiment Size (MB) Dataentries
Synthetic dataset Green Buildings 330 7.200.000

3.2.4.2 Results
The performance evaluation results of the Green Buildings UC are performed in a combined scale
out/scaleup way on both the ICCS x86 and KMA®rch64 clustels. The number of
TaskManagers/Workers afiacreased to measure the influence of scaling out the cluster while at the
same time the number of the task slots per TaskManager/Worker is increased to, in order to investigate
the scaling up impact on each individual TaskManager/Worker of the cluster.

Figure 13 and Figure 14 present the execution time in seconds for the Green Buildings UC Flink
implementation on the KMAXarch64and ICCS x86 testbeds respectively. In bigthres we present
runtime results in semnds for the Green Buildings Peel Bundle scaling out the number
TaskManagers/Workers and scaling out the number of task slots.

Green Buildings (Large Dataset) on KMAX cluster
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500 - -
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1 2 4 8
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Tasksiots f 1 [l 2 4

HGUREL3. GREENBUILDINGRUNTIME ONKMAXQLUSTER
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Green Buildings (Large Dataset) on x86 cluster
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HGUREL4. GREENBUILDNGSRUNTIME ON 86 Q_USTER

The first immediate and anticipata@sultis that increasing the total number of task slots on the clusters
always results in improved runtimes of the evaluated application. Moreover, we can notice that scaling
out the cluster provides higher gains than scaling up the task slots on each node. Moreover, as already
noticed in the KMeans discussigrthe improvement on the runtime performance tends to be sublinear

but this is not always the case on both clusters due to petars other than the available task slots such

as the Flink initialization time, and the network communication for the wwerker synchronization.
Finally, an anticipated notice comparing the results of the two testbeds, is the noticeable higher
performance of the x86 cluster against tlBarch64cluster due to the type of computational resources of

the two testbeds.

3.3 Integration Evaluation Results

As described irBectionl.l, the v2.0 of the Apache FliffkornadoVM integration achieves the same
functionality with v1.0 in terms of heterogeneous hardware execution. However, it abstracts away the
hardware acceleration from the Flink user by transparently executiagittmodified Flink application on

the hardware accelerator. Hence, the API that was introduced in v1.0 has been deprecati\alupers

can use their unmodified code with the E2Data software stack. In order to assess the performance of v2.0,
we compare he endto-end execution times of the-Kleans algorithm of versions 1.0 and 2.0. We should
observe identical performance with a slight performance benefit for v2.0 due to the added optimization
of reading the data directly from the byte buffers of the J\kther than performing array copies as in
v1.0.

Figurel5 shows the relative speedup @2.0 against V1.0 while scaling the input data sizeseKns.
The experimenhas been performed on an integrated Intel GPU (HD 620).
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Flink-Tornado v2.0 vs v1.0 Speedup
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As shown inFigure 15, v2.0 outperforms v1.0 up to 30%. However, as the data sizes increase, the
performance of v2.0 drops due to the memory pressure created to the JVM. The extra memory overhead
results from the dditional dynamically created classes that bind the Flink code with TornadoVM.
However, since these classes will be created only once and will be consequently reused, it is foreseen that
these overheads will not manifest for long running applications.diditeon, on larger machines which

have more memory, even if this overhead exhibits temporal behavior, it will be further ameliorated.
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4. Conclusions

This document presented the intermediate outcomes of WP6 on the integration, configuration,
deployment and galuation of the E2Data software stack and the UCs applications. We presented here
the v2.0 integration of Apache Flink and TornadoVM detailing the differences and improvements
compared to v1.0 and we also provided a comparative evaluation between thedwgoons highlighting

the introduction of transparent hardware acceleration without exposing any additional APIs to Apache
Flink in terms of programmability. We further described the current status of the UCs applications porting
on Apache Flink.

Afterwards, we presented the software components realizing the E2Data deployment environment, i.e.
Apache Flink, Apache Hadoop YARN and TornadoVM and we also presented the current status of the x86
and Aarch64E2Data testbeds providing the technical details of them.

In the last part we described the test suite utilized and extended to meet the requirements of the E2Data
performance evaluation providing software and performance portability on the heterogenemesigon

nodes of E2Data and ensuring reproducibility for the UCs applications and the benchmarking algorithms.
Next we presented and discussed the baseline performance results for the UCs implementation ported
on Apache Flink on both testbeds and we fipakesented and analyzed the v2.0 integration performance
evaluation utilizing the #leans algorithm against the version 1.0 of the integration.

Future stepgowards the final deliverable of WP6 include the final version of E2Data components stack
integration demonstrating the correct operation of entire E2Datystem on largescale data seten
heterogeneous based accelerators on bo®6 andAarch64architectures.Moreover, we will provide

reports on performance/power gains on dllCs for theachievementoft he pr oj ect!T® r eq
this direction all the UCs implementations will be finalized and-fiimed to their final version and the
testing framework will be further extended and finalizad a result of more intensive tésg. Finally,

power corsumption monitoring capabilities will be added to the KMAX cluster and integrated with the
Peel test framework.
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