

www.e2data.eu

Co-funded by the Horizon 2020

Framework Programme of the

European Union under Grant

Agreement nº 727528.

Partners

EXUS (Coordinator), CERTH, CINI, CEA, TLX, EULAMB, TLB,

EURECAT, MEDCOM, ICL, BIT4ID, PAUSIL, SUNDHED, AQUAS,

IDIBAPS

D6.3
Prototype v2 & Intermediate

Evaluation

Spark Works ITC Ltd.

http://www.e2data.eu/

 Page 2 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

DOCUMENT IDENTIFIER: D6.3

DUE DATE: 31/12/2019

DELIVERY DATE: 27/04/2020

CLASSIFICATION: Public

EDITORS: Orestis Akrivopoulos, Nikolaos Kanakis

DOCUMENT VERSION: 1.0

CONTRACT START DATE: 1st January 2018

CONTRACT DURATION: 36 months

D6.3
Prototype v2 & Intermediate Evaluation

http://www.e2data.eu/

 Page 3 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

Disclaimer - The information in this document is provided “as is” and no guarantee or warranty is given that the

information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability. This

document reflects only the authors’ view and the EC are not responsible for any use that may be made of the

information it contains.

http://www.e2data.eu/

 Page 4 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

CONTRIBUTORS

Name Organization

Orestis Akrivopoulos Spark Works ITC

Nikolaos Kanakis Spark Works ITC

Georgios Mylonas CTI

Lidia Pocero CTI
Panagiota Tsetso CTI

Viktor Rosenfeld DFKI

Christos Kotselidis UNIMAN
Sotiris Dimantopoulos EXUS

Gerald Mema EXUS

Vassilis Spitadakis NCOM

Christos Tsalidis NCOM
Hazeef Mohammed KALEAO

PEER REVIEWERS

Name Organization
Christos Kotselidis UNIMAN

Georgios Mylonas CTI

REVISION HISTORY
Version Date Modifications

0.1 30/10/2019 First draft version

0.2 10/11/2019 Introduction & initial context version

0.3 12/12/2019 Testbeds updates version

0.4 29/12/2019 Use Cases and Testing Framework version

0.5 18/02/2020 Use Cases & Benchmarks Algorithms version

0.6 10/03/2020 Use Cases & Benchmarks Algorithms Peel Bundles version

0.7 17/03/2020 Components Integration version

0.8 05/04/2020 PDU Performance Results version

0.9 18/04/2020 Integration version, Use Cases, Benchmarks Algorithms
Performance Results version

0.9 20/04/2020 Internal Review version

1.0 27/04/2020 Final version

http://www.e2data.eu/

 Page 5 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

Executive Summary
This deliverable reports the progress in the integration, configuration and deployment of the E2Data

software stack on the heterogeneous execution environments of the E2Data project. It also documents

the Use Case applications implementation porting to Apache Flink. It also describes the current status of

the two testbeds of the E2Data project and presents the performance evaluation methodology and

results.

This document comes to extend the deliverable of the first version of the E2Data describing first the

integration v2.0 of the Apache Flink and TornadoVM frameworks. In a nutshell, v2.0 improves upon v1.0

in terms of programmability since v2.0 provides transparent hardware acceleration without exposing any

additional APIs to Apache Flink. Afterwards, we describe the current status of the implementation of the

Use Cases applications on Apache Flink. In the next sections we describe the latest snapshot of the E2Data

deployment environment which relies on the execution of the Apache Flink Framework over an Apache

Hadoop YARN cluster and the TornadoVM framework, and afterwards we present the current status and

the technical details of the x86 and Aarch64 testbeds of the project. Next we present the test tool suite

utilized in the performance evaluation of the Use Cases applications and some well-known benchmarking

algorithms, such as K-Means as well as the baseline performance results of the Use Cases applications on

both E2Data testbeds. Moreover, we present and discuss the v2.0 integration performance evaluation

results comparing the improvements on the K-Means algorithm of the second version of integration.

The results extracted from this document draw the baseline performance of the Use Cases application on

the x86 and Aarch64 based testbeds of the project showcasing the achieved performance by scaling out

and scaling up the deployment environment. Furthermore, the results for the second version of

integration highlight the speedup achieved by the current integrated version against the initial one while

scaling up the input data sizes.

http://www.e2data.eu/

 Page 6 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

Table of Contents
Introduction ... 8

1. E2Data Prototype (v2) ... 9

1.1. E2Data (v2) Integration ... 9

1.2. E2Data (v2) Use Case Applications .. 17

2. E2Data Deployment ... 19

2.1 Deployment Environment ... 19

2.2 Testbeds... 20

2.2.1 KMAX Aarch64 Testbed ... 20

2.2.2 ICCS x86 Testbed ... 21

3. Performance Evaluation Results.. 25

3.1 E2Data Platform Performance Evaluation... 25

3.1.1 Methodology ... 25

3.1.2 Benchmarking Algorithms ... 25

3.1.3 Datasets ... 26

3.1.4 Results.. 26

3.2 Use Case Applications Performance Evaluation .. 27

3.2.1 Methodology ... 27

3.2.2 Health Analytics ... 28

3.2.2.1 Datasets ... 29

3.2.2.2 Results.. 29

3.2.3 Natural Language Processing .. 31

3.2.3.1 Datasets ... 33

3.2.3.2 Results.. 33

3.2.4 Green Buildings .. 45

3.2.4.1 Datasets ... 45

3.2.4.2 Results.. 46

3.3 Integration Evaluation Results... 47

4. Conclusions .. 49

Bibliography ... 50

Figures ... 51

Tables ... 52

http://www.e2data.eu/

 Page 7 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

Abbreviations ... 54

http://www.e2data.eu/

 Page 8 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

Introduction
This deliverable describes the work conducted so far by the E2Data Consortium in WP6, by reporting the

results of Tasks 6.2 and 6.3. Emphasis is given on the work conducted since the release of deliverable D6.2

[1] Therefore, D6.3 extends D6.2 in documenting the progress in the integration of E2Data components

and the Use Case (UC) applications implementation. Also, it documents the current status of the two

testbeds of the E2Data project and presents the performance evaluation methodology and results.

The goal of WP6 is to support the integration, installation and configuration of the E2Data software

components stack. WP6 includes the Installation and the configuration of the integrated E2Data

environment for demonstration purposes of the implemented system prototypes, currently producing an

intermediate prototype version. The testbed for Aarch64 architecture, named KMAX, is deployed and

supported by KALEAO while the x86 architecture testbed by the ICCS partner. also providing power

consumption measurement capabilities.

WP6 provides power/performance evaluation of the integrated E2Datra system also including all UCs

applications. To evaluate the efficiency and performance of the system, extended with the partner UCs

the consortium utilizes and extends a test suite framework able to ensure software and performance

portability on the heterogeneous deployment environment of E2Data. Moreover, the test framework

provides to the utilized well-known benchmarking algorithms, such as K-Means, and the partners UCs

reproducibility for the proper performance improvement evaluation. We also provide baselines, which

will show the benefits of the E2Data solution achieving the requirements of the project. In this deliverable

we focus on performance evaluation results for the second integration version of the E2Data accelerated

stack utilizing the K-Means benchmarking algorithm on x86 architectures a well as results setting the

baselines for the UCs applications on both x86 and Aarch64 testbeds.

The rest of this document is organized in the following manner: Section 1 presents the intermediate

prototype version of the E2Data software stack. The top level of the intermediate version of E2Data stack

contains the implementation of the (UC) applications using the Big Data processing framework of the

project, i.e. Apache Flink [2] On the heterogeneous execution of Big Data processing we have the

intermediate version of integration of the Apache Flink framework with the TornadoVM framework

realizing the execution on hardware accelerators. Section 2 describes in brief the software components

realizing the E2Data deployment environment and afterwards presents the technical details of the x86

and Aarch64 based testbeds of the project. Section 3 presents the test tool suite implemented in the

context of the E2Data project. The test suite ensures software and performance portability on the

heterogeneous execution nodes of E2Data. The utilized test framework provides to the utilized well-

known benchmarking algorithms, such as K-Means and the UCs implementations reproducibility for the

E2Data stack performance improvement evaluation. Moreover, we describe the methodology followed

on the execution of the performance evaluation, the datasets, and the UCs Apache Flink implementations

under evaluation. Finally, in Section 4 we draw the conclusions of the work done so far and discuss the

performance evaluation results.

http://www.e2data.eu/

 Page 9 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

1. E2Data Prototype (v2)
This section presents the intermediate prototype version of the E2Data software stack. The top level of

the intermediate version of E2Data stack contains the implementation of the UC applications using the

Big Data processing framework of the project, i.e. Apache Flink [2] On the heterogeneous execution of Big

Data processing we have the intermediate version of integration of the Apache Flink framework with the

TornadoVM framework realizing the execution on hardware accelerators.

In the following parts, we present the intermediate version of the E2Data integrated software

components, followed by the current status of the UCs applications implementation based on Apache

Flink.

1.1. E2Data (v2) Integration
In this section we describe the integration v2.0 of Apache Flink and TornadoVM. We detail the differences

and improvements compared to v1.0 of the integration as well as provide a comparative evaluation

between the two versions. In a nutshell, v2.0 improves upon v1.0 in terms of programmability since v2.0

provides transparent hardware acceleration without exposing any additional APIs to Apache Flink (like

v1.0).

Apache Flink is a framework for distributed real time data processing of applications typically written in

Java/Scala. A Flink application consists of two major units - a JobManager and multiple TaskManagers.

The JobManager handles the coordination among TaskManagers. It assigns operations to them and

distributes the data according to the parallelism. On the other hand, TaskManagers are the processes on

which actual computations happen such as map, reduce, joins etc.

Despite TornadoVM and Apache Flink are both written in Java, there are some main incompatibilities with

regard to their granularity of execution and their APIs.

Apache Flink, being predominantly a streaming engine, orchestrates the execution in a fine-grained

manner. In particular, various operators (e.g., map, reduce, etc.) can be distributed as separate tasks or

chained tasks to the Task Manager(s). Subsequently, the Task Manager(s) will perform a computation

described by the operator on the input dataset at the granularity of the dataset’s element. This execution

model is also reflected in the Flink API. For example, Listing 1 presents a simple map function in Flink, in

which each element of the input dataset (in) is multiplied by 2.

public Integer map (Integer in) {

 return in * 2;

 }

LISTING 1. EXAMPLE OF A MAP FUNCTION IN FLINK API.

On the other hand, TornadoVM operates in a coarse-grained manner, as it is designed to offload parts of

Java applications on parallel OpenCL-compatible co-processors (e.g. GPUs, FPGAs), which are utilised

better when operating in large data sizes. Therefore, the TornadoVM API has been designed to comply

with the OpenCL programming model that orchestrates the execution from the host to the available

heterogeneous co-processors in the system. For instance, Listing 2 presents the same map computation

http://www.e2data.eu/

 Page 10 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

that described above using the TornadoVM @Parallel annotation. This annotation is used as a hint to the

TornadoVM JIT compiler that the loop can be accelerated by parallel execution.

public void map (int [] in , int [] out) {

 for (@Parallel int i = 0; i < in .length; i++) {

 out [i] = in [i]* 2;

 }

}

LISTING 2. EXAMPLE OF A MAP FUNCTION IN TORNADOVM.

As shown in Listing 1 and Listing 2, one more difference between Flink and TornadoVM is with regard to

the types of the input and output datasets. Apache Flink operates on object types (e.g., Integers, Doubles,

Plain Java Objects, Tuples), while TornadoVM operates on primitive types (e.g., int, double, float).

Integration: Version 1.0. To address the aforementioned incompatibilities between Flink and TornadoVM,

in the first version of the Flink-TornadoVM integration we intervened in two Flink components; the Client

and the Task Manager.

In the Flink Client component, we provided a set of classes (e.g., TornadoMapFunction) that developers

had to extend to achieve compatibility with TornadoVM.

For example, to execute the map computation via TornadoVM while using the Flink API (Listing 1), the

provisioned TornadoMapFunction class would be required first to be extended, as presented in Listing 3.

public abstract class TornadoMapFunctionBase implements TornadoMapFunction

{

 public abstract void compute(int [] in, int [] out) ;

 @Override

 public void tmap(int [] in, int [] out) {

 compute(in, out);

 }

}

LISTING 3. TORNADOVM-APACHE FLINK V1.0 INTEGRATION API.

Then, the compute method in the TornadoMapFunctionBase class would need to be extended with the

required computation based on the TornadoVM annotations, as presented in Listing 4. As shown in Listing

4, the compute method uses primitive arrays and employs the @Parallel annotation, fully adhering to

TornadoVM’s programming model.

public static final class Multiplication extends TornadoMapFunctionBase {

 @Override

 Public void compute (int [] in , int [] out) {

http://www.e2data.eu/

 Page 11 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

 for (@Parallel int i = 0; i < in .length; i++) {

 out[i] = in [i]* 2;

 }

 }

}

LISTING 4. EXAMPLE OF MATRIX MULTIPLICATION IN TORNADOVM-APACHE FLINK V1.0 INTEGRATION.

In the Task Manager component, we skipped any Flink processing occurring upon the task’s arrival, and

instead we stored the information contained in the task. In case of DataSource tasks, we first analyzed

the input data which is stored in a Java Collection, and then copied it in primitive arrays. For example, if

the input data was grouped in a collection of Tuple2<Integer, Double>, we would first create two primitive

arrays of types int and double and then populate them with the values of the Tuple2 fields. A secondary

case is the deployment of transformation tasks (e.g. Map, Reduce). In this case, we would store the user

function in specific buffers, instead of performing the computation described in the task to each element

of the input dataset. Another case of deployment is the DataSink task, which is the task that is used to

collect the computation results and send them back to the Client. In this case, we would utilize all the

information we stored before, in order to perform the computation using TornadoVM.

As presented in Listing 5, we created a TornadoVM TaskSchedule, to which we pass the primitive array

input data (in) and the functions (tmap) that were stored when the computational tasks were deployed.

After the computation is completed, the primitive results (out) of the computation is converted to the

expected return type of Flink and is sent back to the cluster.

public class Task {

...

new TaskSchedule("s0") .task ("t0" , Multiplication::tmap, in , out)

 .streamOut (out)

 .execute () ;

...

}

LISTING 5. EXAMPLE OF INVOKING TORNADOVM VIA FLINK IN INTEGRATION V1.0.

Integration: Version 2.0. The two main innovations that are introduced in the second iteration of the

integration are: (i) the detachment to any new APIs and (ii) the support of Plain Java Object types, such as

Tuples. To achieve that, changes were implemented in both Flink and TornadoVM. Specifically, on the

Flink side, we addressed both incompatibilities with TornadoVM regarding the execution granularity and

their APIs, while on the TornadoVM side, we provided support for Plain Old Java Object (POJO) types.

The changes that we performed in Apache Flink were all focused on the Task Manager component. To

avoid the enforcement of using TornadoVM API to Flink developers, we implemented skeleton classes for

map and reduce operators. Hence, we utilize the ASM framework1 to perform “bytecode manipulation”

1 https://asm.ow2.io

http://www.e2data.eu/

 Page 12 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

and patch the function call of the Flink User Defined Function (UDF) into one of the classes provided at

runtime.

Listing 6 presents the TornadoMap skeleton class which is used for map transformations. This class

includes the equivalent functions that would be called using the TornadoVM API, as presented in Listing

1.

public class TornadoMap {

 public MiddleMap mdm;

 public TornadoMap(MiddleMap mdm) {

 this .mdm = mdm;

 }

 public void map (int [] in , int [] out) {

 for (@Parallel int i = 0; i < in .length; i++) {

 out [i] = mdm.mymapintint(in [i]);

 }

 }

 ...

}

LISTING 6. SKELETON CLASS FOR MAP OPERATORS.

The MiddleMap class is an intermediate abstract class that contains signatures similar to the signatures

of the Flink API, but with the corresponding primitive inputs and the results returned to Object types. In

case of Flink functions that use input or output with the Tuple Object type, this type is maintained in the

skeleton functions, as it is handled internally by the TornadoVM Just In Time (JIT) compiler.

public abstract MiddleMap {

 public abstract int myMapIntInt (int i) ;

 public abstract int myMapIntDouble (double d) ;

 ...

 public abstract Tuple2 myMapTuple2Tuple2(Tuple2 t) ;

 ...

}

LISTING 7. EXAMPLE METHOD SIGNATURES FOR MAP SKELETON CLASS.

Finally, the MapASMSkeleton class, extends the MiddleMap class and is used to perform the bytecode

manipulation via the ASM framework.

public class MapASMSkeleton extends MiddleMap {

http://www.e2data.eu/

 Page 13 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

 public int myMapIntInt (int i) {

 return 0;

 }

 public int myMapIntDouble (double d) {

 return 0;

 }

 ...

 public Tuple2 myMapTuple2Tuple2(Tuple2 t) {

 return null ;

 }

 ...

}

LISTING 8. EXAMPLE METHOD SIGNATURES FOR ASM MAP SKELETON CLASS.

We have two classes that extend the MapASMSkeleton class to implement the bytecode manipulation

from Flink to TornadoVM. The first class called ExamineUDF, examines the Flink user function and analyzes

the input and output types. Then, based on the data types, the second class TransformUDF patches the

bytecode of the skeleton function with the bytecode of the Flink UDF function.

Essentially, if we were to pass the map function presented in the previous section to the ExamineUDF and

TransformUDF functions, the bytecode of the myMapIntInt function in the MapASMSkeleton class would

be the equivalent bytecode to the method shown in Listing 9.

public int myMapIntInt (int i) {

 return map(i);

}

LISTING 9. EXAMPLE MAP METHOD

After the transformation, ASM returns the altered MapASMSkeleton class in bytes. The class is then

loaded and assigned to a MiddleMap variable. Finally, this variable is passed to the constructor of the

TornadoMap.

// Examine the user function to extract i nformation about the types

ExamineUDF.FlinkClassVisitor flinkVisit = new

ExamineUDF.FlinkClassVisitor();

ClassReader flinkClassReader = new

ClassReader (TransformUDF.mapUserClassName);

 flinkClassReader.accept(flinkVisit, 0);

// store this information so that it can be accessed by the TransformUDF

class

setTypeVariablesMap();

http://www.e2data.eu/

 Page 14 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

// patch udf into the appropriate MapASMSkeleton

ClassReader readerMap = new

ClassReader ("org.apache.flink.runtim e.asm.map.MapASMSkeleton");

ClassWriter writerMap = new ClassWriter (readerMap,

ClassWriter.COMPUTE_MAXS);

writerMap.visitField(Opcodes.ACC_PUBLIC, "udf" , desc, null ,

null).visitEnd();

TransformUDF.MapClassAdapter adapterMap = new

TransformUDF.MapClassAdapter(writerMap);

readerMap.accept(adapterMap, ClassReader.EXPAND_FRAMES);

// Load class generated

byte[] b = writerMap.toByteArray();

AsmClassLoader loader = new AsmClassLoader();

Class<?> clazzMap =

loader.defineClass("org.apache.flink.run time.asm.map.MapASMSkeleton" , b);

MiddleMap md = (MiddleMap) clazzMap. new Instance ();

TornadoMap msk = new TornadoMap(md);

LISTING 10. CODE EXAMPLE FOR ADAPTING A FLINK OPERATOR TO TORNADOVM DYNAMICALLY VIA ASM.

In order to change the granularity of the execution, we follow the same model as in the previous version

of the integration; at first, we collect all the data stored in the deployed tasks, until a DataSink task is sent

to the Task Manager. At this moment, the TornadoVM execution starts. The only difference with the first

version of the integration lies in the way that we handle the input data when a DataSource task is received.

In this case, we access the data in their byte form, right before the execution of the deserialization phase

in the Task Manager. As the serialized byte streams contain a number of extra header bytes and

considering that the endianness in Flink is different from that in TornadoVM, we create a new byte buffer

which stores the data streams from Flink in the TornadoVM endianness. Finally, similarly to the first

version, upon the deployment of the DataSink task, we use all the information stored in the Task Manager

to perform the computation via TornadoVM. Listing 11 presents an outline of the process described

above.

public class Task {

...

new TaskSchedule("s0")

 .task ("t0" , Multiplication::tmap, in , out)

 .flinkData(inBytes, numOfResultBytes)

 .streamOut (out)

 .execute () ;

http://www.e2data.eu/

 Page 15 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

...

}

LISTING 11. EXAMPLE OF INVOKING TORNADOVM VIA FLINK IN INTEGRATION V2.0.

The only difference between the code presented in Listing 11 and the one in Listing 7, is that the

TaskSchedule has a flinkData function, which is used to pass the input bytes and the size of bytes that is

anticipated to return as a result. This information is utilized by internal TornadoVM array wrappers to

write and read the bytes of data to and from the heterogenous device, respectively.

After the execution of the computation on the heterogeneous device, the endianness of the array that

stores the results is changed to follow the Flink endianness and the data is returned back to the

serialization buffers of Flink, which distributes them to the cluster.

Regarding the object handling in TornadoVM we extended the TornadoVM JIT compiler with new

compilation phases that replace the data access to POJO objects with the access to the corresponding

primitive arrays that store the data.

For example, assuming that the input object type is Tuple2<Integer, Tuple2<Double,Double>> the

execution is as follows. At first, we create, in Flink, a new array of byte primitive type which contains the

raw bytes of each field of the input objects. In this example, each element in the input object occupies up

to 20 bytes in the corresponding byte array, including 4 bytes for the Integer object and 8 bytes for each

of the Double fields in the nested Tuple2 object. Thus, the total size of the byte array would be

20*numberOfTuples.

FIGURE 1. EXAMPLE INPUT/OUTPUT INDEX ARRAY.

Then, we introduced new compilation phases to replace the access to the fields with an access to the raw

data of the field. The new phases apply modifications as node attachments/detachments in the compiler’s

intermediate representation (IR) graph. For that reason, we created a compiler phase that identifies the

LoadFieldNodes nodes, which are used for loading the Tuple field from the array. These nodes are then

replaced by new LoadIndexedNodes; a new node is added for every Tuple field that we need to load as a

primitive type. Then, we remove all unnecessary nodes, such as LoadFieldNodes, FixedGuardNodes,

Box/Unbox nodes. A similar process is followed when the return type of the function is a Tuple. In this

case, we replace the single StoreIndexedNode node of type Object, with several StoreIndexedNodes, each

for every field in the returned Tuple.

If all fields in the Tuple objects have the same type, then in order to access each field it is sufficient to set

the index of LoadIndexedNode or StoreIndexedNode according to the following formula: i*totalFields +

numberOfField. For example, if the input Tuple was a Tuple3<Integer, Integer, Integer>, then:

http://www.e2data.eu/

 Page 16 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

-> the index for the LoadIndexedNode which replaced LoadField 0 would be: i*3

-> the index for the LoadIndexedNode which replaced LoadField 1 would be: i*3 + 1

-> the index for the LoadIndexedNode which replaced LoadField 2 would be: i*3 + 2

In this case, the compiler will replace LoadFieldNodes with ReadNodes, which will be adjusted with the

appropriate offsets.

However, if the types of the fields in a Tuple are different, this indexing is not sufficient to correctly read

the data of each field. The reason is that the offsets for each ReadNode are calculated by the compiler

based on the assumption that the array is homogeneous. Therefore, if we had as input/output data the

array in Figure 1, the Read/Write node for field 0 (Integer) would read the first four bytes (positions 0-3)

and subsequently the Read/Write node for field 1 (Double) would assume that in the previous position of

the array was another double value. Therefore, the second node would read/write bytes 8-15 and for field

2 the same assumption would be made, so the bytes that would be read/write would be bytes 16-23.

Thus, we created a new compiler phase to calculate the correct offsets. The offsets of the Read/Write

nodes are calculated as follows:

Tuple2:

 Read offset for F0: oclAddress + i*sizeOf(F1)

 Read offset for F1: oclAddress + (sizeOf(F0) + i*sizeOf(F1)

Tuple3:

 Read offset for F0: oclAddress + (sizeOf(F1) + sizeOf(F2)*i)

 Read offset for F1: oclAddress + (sizeOf(F0) + (sizeOf(F0) + sizeOf(F2))*i)

Read offset for F2: oclAddress + (sizeOf(fieldO) + sizeOf(field1) + (sizeOf(field0) + sizeOf(field1)*i)

Tuple4:

 Read offset for F0: oclAddress + (sizeOf(field1) + sizeOf(field2) +

 sizeOf(field3))*i

 Read offset for F1: oclAddress + (sizeOf(field0) + (sizeOf(field0) +

 sizeOf(field2) + field3)*i)

Read offset for F2: oclAddress + (sizeOf(fieldO) + sizeOf(field1) + (sizeOf(field3) + sizeOf(field0) +

sizeOf(field1)*i)

Read offset for F3: oclAddress + (sizeOf(fieldO) + sizeOf(field1) + sizeOf(field2) + (sizeOf(fieldO) +

sizeOf(field1) + sizeOf(field2))*i)

Finally, we created one more compiler phase to support a secondary interface of map functions named

RichMapFunctions. The distinction between the map functions that implement the RichMapFunction

interface and the ones that implement the MapFunction interface is that the former have an extra input

dataset, which is broadcasted to other parallel instances of a Flink operation. Our compiler phase supports

RichMapFunctions functions, by eliminating nodes related to collections (e.g. MethodCallTarget Nodes,

Invoke Node, etc.) and changing the limit of the Loop PhiNode from Invoke#Collection.size to a constant

node that contains the size of the dataset.

http://www.e2data.eu/

 Page 17 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

1.2. E2Data (v2) Use Case Applications
Health Analytics: EXUS has already developed a hospital readmission risk prediction algorithm, in order

to reduce the number of patients that are readmitted in a hospital within 30 days after their initial release.

In order to improve the predictive capability of the hospital readmission risk prediction algorithm in the

E2Data project, a dataset that represents 10 years (1999-2008) of clinical care at 130 US hospitals will be

used. This dataset includes over 50 features for each patient such as race, gender, age, admission type,

spending time in hospital, medication, etc.

Furthermore, a data preprocessing step has been performed in order to handle missing values, inaccurate
and inconsistent values, duplicates, etc. Also, a feature selection step using regression models in order to
extract the most important information from the dataset.

After preprocessing, a supervised machine learning model should be selected. The selection of the
algorithm has two key features that should been taking into consideration:

1. Which model fits better in the distribution of given data?
2. Which model can be parallelized in order to cover the E2DATA requirements?

Regarding those requirements the algorithm that has been used is the Logistic Regression using batch
Gradient Descent for parameters optimization. This algorithm gets 2 arrays as input:

● X: A 2D array with size the number of patient and the number of patient’s features
● y: A 1D array which are the real values of readmission type (1 for readmitted patient and 0 for not

readmitted patient)

The output is an 1D array with size the number of patient’s features which are actually the trained
parameters.

The logistic regression algorithm is as follows:

ὒέὫὭίὸὭὧὙὩὫὶὩίίὭέὲὢȟώȡ

 ὍὲὭὸὭὥὰὭᾀὩ ὖὥὶὥάὩὸὩὶί ύ

 ὖὶὩὨὭὧὸ ὸὬὩ ὴὶέὦὥὦὭὰὭὸώ έὪ ὶὩὥὨάὭίίὭέὲ όίὭὲὫ ὸὬὩ άὥὸὶὭὼ ὢ ὥὲὨ ύ ώ

 ὅὥὰὧόὰὥὸὩ ὸὬὩ Ὡὶὶέὶ ὦώ ὧέίὸ ὪόὲὧὸὭέὲ όίὭὲὫ ώ ὥὲὨ ώ ὐ

 ὕὴὸὭάὭᾀὩ ὸὬὩ ύ όίὭὲὫ ὸὬὩ ὫὶὥὨὭὩὲὸ ὨὩίὧὩὲὸ ὥὰὫέὶὭὸὬά έὲ ὐ ὲὩύ ύ

In the context of E2Data, we exploit the underlying Apache Flink and Tornado APIs. The Apache Flink will
be used for data partitioning and parallelization of the steps of the algorithm using the MapReduce
approach. Tornado VM will be used in order to parallelize the functionalities of the algorithm such as
making parallel matrix operations.

Natural Language Processing: The main NLP applications to evaluate and exhibit E2Data’s impact are key

towards the actual exploitation and adoption of E2Data results. These are:

● Sentiment and Cause analysis on tourism industry data (reviews, twitter messages, web articles,

etc.). We name it “Sentitour” and it is an application under development. The idea here is to be able

to process travel reviews and opinions in real time. The processing of such information will be used

to extrapolate useful knowledge and alerts about interesting opinions, their polarity and the reason

http://www.e2data.eu/

 Page 18 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

that is causing the positive or negative statement, as classified within several categories (i.e. cost,

cleanliness, etc.).

A key success factor of the application is to be able to respond into large amounts of data, as quickly

as possible. The ability to process at least 250 messages per second and 2TB of yearly data will signal

the system’s adequacy to become competitive enough and reliable (able to support Intime alerting)

The datasets used in the evaluation include:

o Review texts for hotels, destinations, and tourism services in general

o Twitter messages commenting tourism services

o Articles

● Address Cleaning & Identification - Address resolution, for mail delivery services, is the second

application that will demonstrate the gains of acceleration. The objective is to analyze the input

address and find its point in a GIS system. The application has a special need for performance because

it is used in different phases of an automatic system with specific performance requirements. The rate

must be sustained above 20 addresses/sec in order to support the required quality of service. The

current application uses a strict (small) set of rules in order to keep high rates. In the new updated

TornadoVM version, we expect to expand the functionality to a richer set of resolution rules and use

machine learning algorithms utilizing the historic data of the mail delivery organization.

Green Buildings: A large IoT infrastructure is installed in educational buildings in Greece, Italy and Sweden,
currently totaling 1.239 sensing endpoints and growing, expected to reach over 1.300 points by the end
of the project. This infrastructure provides energy consumption-related data for each school, as well as
outdoor and indoor environmental data for a number of classrooms in each building. In its current setup,
this deployment produces daily over 400 MB of data, resulting in a yearly data volume of over 140 GB.

In this context, sensors comprising the E2Data IoT infrastructure generate, handle, transfer and store a
huge amount of data, which is difficult to be processed in an efficient manner using current platforms and
techniques. More specifically, big data analysis algorithms and techniques such as clustering, regression,
classification and pattern recognition will be deployed in E2Data in order to enable superior
computational efficiency, in order to enable processing pipelines that will allow real-time monitoring of a
certain building’s energy behavior.

To meet the requirements of the current version of the E2Data framework integration we have provided

an Apache Flink implementation utilizing the DataSet API of the framework for the Analytics Engine of the

Green Buildings UC. The source code is available under the project’s Git repository in:

https://github.com/E2Data/gb-analytics-flink.

http://www.e2data.eu/
https://github.com/E2Data/gb-analytics-flink

 Page 19 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

2. E2Data Deployment
In this section, we firstly describe in brief the software components realizing the E2Data deployment

environment and afterwards we provide technical details of the x86 and Aarch64 based testbeds utilized

by the E2Data software stack.

2.1 Deployment Environment
The deployment of the E2Data software stack relies on the deployment of the Apache Flink Framework

over an Apache Hadoop YARN cluster [3] and the TornadoVM framework. Apache Hadoop YARN is a

cluster resource management framework. It allows to run various distributed applications on top of a

cluster. Flink runs on YARN next to other applications. Users do not have to setup or install anything if

there is already a YARN setup. A prerequisite of a Hadoop YARN deployment is the installation and

configuration of Hadoop DFS for the needs of the Hadoop YARN cluster operations. Hence, a proper HDFS

(Hadoop Distributed File System) or another distributed file system supported by Hadoop is installed on

the cluster.

In a nutshell, regarding the operation of Flink over a YARN cluster, the YARN client needs to access the

Hadoop configuration to connect to the YARN Resource Manager (RM) and HDFS. When starting a new

Flink YARN session, the client first checks if the requested resources, memory and virtual cores for the

ApplicationMaster (AM) are available. After that, it uploads a JAR file that contains Flink and the

configuration to HDFS. The next step for the client is to request a YARN container to start the AM. Since

the client registered the configuration and JAR-file as a resource for the container, the NodeManager of

YARN running on that particular machine will take care of preparing the container (e.g. downloading the

files). Once this is finished, the (AM) starts.

The JobManager and AM are running in the same container. Once they successfully start, the AM knows

the address of the JobManager (its own host) and a new Flink configuration file is generated for the

TaskManagers (so that they can connect to the JobManager). The file is also uploaded to HDFS.

Additionally, the AM container also serves the Flink’s web interface. All ports that the YARN code is

allocating are ephemeral ports. This allows users to execute multiple Flink YARN sessions in parallel.

After that, the AM starts allocating the containers for Flink’s TaskManagers, which will download the JAR

file and the modified configuration from the HDFS. Once these steps are completed, Flink is set up and

ready to accept Jobs.

To orchestrate and execute benchmarks on the E2Data heterogeneous systems with hardware dependent

parameters that have to be tuned and spawn a diverse set of configuration files we utilize the Peel

Experiment Execution Framework [4] Peel, a framework to define, execute, analyze, and share

experiments, enables the transparent specification of benchmarking workloads and system configuration

parameters. It orchestrates the systems involved and automatically runs and collects all associated logs

of experiments. Peel currently supports Apache HDFS, Hadoop, and Flink and can easily be extended to

include further systems.

Apart from the current integrated version of Apache Flink with TornadoVM already discussed in Section

1.1, for the baseline results presented afterwards in this document we use plain Apache Flink over Apache

YARN and Oracle’s JVM. The exact versions of those software components are summarized in Table 1.

http://www.e2data.eu/

 Page 20 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

TABLE 1. E2DATA BASELINE DEPLOYMENT SOFTWARE COMPONENTS.

Name Version Description

Apache Flink 1.9.1 Big Data Framework

Hadoop Yarn 3.1.1 Cluster Resource Management

Framework

hǊŀŎƭŜΩǎ W±a 1.8 Execution Engine

Peel 1.1 Peel Experiment Execution

Framework

2.2 Testbeds
In this section we describe the current status and the specification details of the two testbeds of E2Data,

i.e. the Aarch64 based provided by the KALEAO partner and the x86 based provided by the ICCS partner.

2.2.1 KMAX Aarch64 Testbed
The KALEAO (KMAX) testbed consists of multi-core ARM Processors. Four Identical Blade systems have

been made available for the testbed. Each of the blades consists of 64 Big Cores and 64 Little cores. The

details of the KALEAO (KMAX) are described in Table 2.

TABLE 2. KALEAO (KMAX) AARCH64 TESTBED SPECIFICATIONS.

Machine

Type

ID Number of

Processors

Big Cores Little Cores RAM (GB)

Blade 3 16 4x CortexA-57

@2.1Ghz

4x CortexA-53

@1.5Ghz

4

Blade 4 16 4x CortexA-

57@2.1Ghz

4x CortexA-53

@1.5Ghz

4

Blade 5 16 4x CortexA-57

@2.2Ghz

4x CortexA-53

@1.5Ghz

4

Blade 6 16 4x CortexA-57

@2.1Ghz

4x CortexA-53

@1.5Ghz

4

To add heterogeneity to the cluster additional hardware is also available, that consists of FPGAs and GPUs.

The details of these Hardware Components are shown below in Table 3 and Table 4.

http://www.e2data.eu/
mailto:CortexA-57@2.1Ghz
mailto:CortexA-57@2.1Ghz

 Page 21 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

TABLE 3. FPGA BOARD SPECIFICATIONS.

Machine Type ID FPGA Type

FPGA Hardware 1 Xilinx “Ultrascale+” Quad-core 4GB DDR4 to PS 512MB DDR4

TABLE 4. MALI GPU BOARD SPECIFICATIONS.

Machine

Type

ID Arm Mali GPU Number of

Processors

Big Cores Little Cores RAM

(GB)

Rock 960 7 Mali T860MP4 6 2x CortexA-72 4x CortexA-53 4

Hikey 960 8 Mali G71 MP8 8 4x CortexA-73 4x CortexA-53 3

Hikey 960 9 Mali G71 MP8 8 4x CortexA-73 4x CortexA-53 3

Hikey 960 10 Mali G71 MP8 8 4x CortexA-73 4x CortexA-53 3

Hikey 960 11 Mali G71 MP8 8 4x CortexA-73 4x CortexA-53 3

Hikey 960 12 Mali G71 MP8 8 4x CortexA-73 4x CortexA-53 3

The above set of hardware components form the KALEAO (KMAX) testbed cluster.

2.2.2 ICCS x86 Testbed
The ICCS testbed consists of multi-core physical machines, some of which have also attached a set of

hardware accelerators. For the time being, only GPU accelerators have been installed. The detailed

specifications are presented in Table 5.

TABLE 5. ICCS X86 CLUSTER SPECIFICATIONS.

Host Process
or Model

Sockets Cores
per
socket

Threads
per core

NUMA
nodes

RAM
(GB)

HW
Accelerator
s

silver1 Intel(R)
Xeon(R)
Silver
4114
CPU @
2.20GHz

2 10 2 2 256 2 x Tesla
V100-
SXM2-
32GB,
1 x
GeForce
GTX 1060

http://www.e2data.eu/

 Page 22 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

6GB

gold1 Intel(R)
Xeon(R)
Gold
5120
CPU @
2.20GHz

2 14 2 2 256 1 x
GeForce
GTX 1060
6GB,
1 x Radeon
RX 580
4GB

gold3 Intel(R)
Xeon(R)
Gold
5218T
CPU @
2.10GHz

2 16 2 2 314 -

cognito Intel(R)
Core(TM
) i7-
4820K
@
3.70GHz

1 4 2 1 64 1 x
GeForce
GTX 1060
6GB

quest Intel(R)
Core(TM
) i7-8700
@
3.20GHz

1 6 2 1 32 1 x
GeForce
GTX 1060
6GB,
1 x UHD
Graphics
630,
1 x Radeon
RX 580
4GB

termi7 Intel(R)
Xeon(R)
CPU
E5645
@
2.40GHz

2 6 2 2 96 -

termi8 Intel(R)
Xeon(R)
CPU
E5645
@
2.40GHz

2 6 2 2 96 -

termi9 Intel(R)
Xeon(R)
CPU
E5645
@
2.40GHz

2 6 2 2 96 -

termi10 Intel(R)
Xeon(R)

2 6 2 2 96 -

http://www.e2data.eu/

 Page 23 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

CPU
E5645
@
2.40GHz

termi11 Intel(R)
Xeon(R)
CPU E5-
2650 0
@
2.00GHz

2 8 2 2 64 -

termi12 Intel(R)
Xeon(R)
CPU E5-
2650 0
@
2.00GHz

2 8 2 2 64 -

Regarding power consumption monitoring capabilities on the ICCS x86 cluster the ICCS infrastructure

provides a Power Distribution Unit (PDU) for the E2Data project. The provided hardware is an APC

metered-by-outlet Rack PDU. The exact model is AP8481.

The PDU is reachable through the network, at a public IP address. The PDU features a total of 24 outlets.

All physical nodes that have been dedicated to the E2Data project are plugged to these outlets. In

addition, three pairs of physical nodes among the ones provided share their PSUs with one another.

The PDU supports three distinct methods for monitoring power statistics of its outlets: it serves a web UI,

a Telnet/SSH console, and it also acts as an SNMPv3 agent. ICCS makes all these access methods available

to the E2Data partners for the duration of the project.

To enable power consumption metering capabilities on the testing framework we have developed a

system extension for the Peel Framework utilizing the PDU telnet API capable to compute the average

power consumption during the execution of an experiment of the nodes participating in this experiment

run.

In Figure 2 and Figure 3 we present power consumption results from the x86 ICCS cluster for the Green

Buildings UC application and the K-Means algorithm respectively. The results refer to the average power

consumption in Watts measured from the nodes participating in each experiment execution while scaling

up and scaling out the resources of the cluster.

http://www.e2data.eu/

 Page 24 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

FIGURE 2. POWER CONSUMPTION FOR GREEN BUILDINGS UC ON ICCS X86 CLUSTER.

FIGURE 3. POWER CONSUMPTION FOR K-MEANS ON ICCS X86 CLUSTER.

As shown in both figures, as the number of worker nodes and task slots scale, the power consumption
also increases. This trend is anticipated for all UCs and benchamrking algorithms that exhibit similar
scaling trends.

0

500

1000

1 2 4 8

Worker

P
o
w

e
r

C
o

n
s
u
m

p
ti
o

n
 [

W
a

tt
]

Task slots 1 2 4 8

KīMeans on ICCS cluster

http://www.e2data.eu/

 Page 25 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

3. Performance Evaluation Results
As already mentioned, to ensure reproducible results, we use the Peel Experiment Execution Framework

to execute our experiments. Peel allows us to package all the information related to a suite of experiments

in a so-called Peel bundle. These bundles are then installed on a test system and executed automatically.

Peel captures performance information such as experiment runtime and system utilization metrics. In this

Section we present performance evaluation results for well-known benchmarking algorithms, such as K-

Means and the UCs applications. Finally, we present and discuss the v2.0 integration performance

evaluation results comparing the end-to-end execution times of the K-Means algorithm of version 2.0

against version 1.0.

3.1 E2Data Platform Performance Evaluation
In the first part of the provided performance results we utilize standard benchmarking algorithms to

extract results of the version 2 of the E2Data big data framework, i.e. Apache Flink. We evaluate Apache

Flink version 1.9.1 utilizing the K-Means algorithm Peel Bundle available in

https://github.com/E2Data/e2data-peel-example over both the x86 and Aarch64 clusters. Below we

describe the evaluation methodology, the benchmarking algorithm and we present and discuss the

extracted performance evaluation results.

3.1.1 Methodology
We perform a combined scale-out/scale-up experiment utilizing the Peel Framework. We vary the number

of workers to measure the influence of scaling out the cluster. In addition, we vary the number of task

slots per worker to measure the influence of scaling up the individual machines. We set the amount of

memory available for Flink Task Managers to 75% of the physical system memory. This corresponds to the

default amount of memory reserved by Flink for each Task Manager running inside a YARN container.

Each worker functions both as a Flink Task Manager and an HDFS Data Node. We use the default HDFS

replication of 3. Table 6 lists the software versions used for our experiments.

TABLE 6. PERFORMANCE EVALUATION FRAMEWORK SOFTWARE CONFIGURATION.

Software Version

Flink 1.9.1
Hadoop 3.1.1

DStat 0.7.3

3.1.2 Benchmarking Algorithms
We use K-Means as an example of a machine learning algorithm. K-Means is a well-known clustering

algorithm and is used as a basis for many machine learning tasks. Its input is a collection of points in an n-

dimensional space and a collection of k centroids representing an initial clustering. The algorithm

iteratively refines the initial clustering by assigning each point to its nearest centroid and updating each

centroid by computing the mean of the points assigned to it. The algorithm typically runs to convergence

or for a fixed number of iterations. The output of K-Means are the final centroids and/or an assignment

of each point to their cluster (both results are equivalent).

http://www.e2data.eu/
https://github.com/E2Data/e2data-peel-example

 Page 26 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

3.1.3 Datasets
TABLE 7. K-MEANS BENCHMARKING ALGORITHM CONFIGURATION.

Description Used in experiment Size (MB) Data points

Generated dataset K-Means 700 60 million

For the K-Means experiment, we use an input file of about 700 MB, consisting of 60 million points with 2

dimensions and 64 initial clusters. We run each experiment three times and report the median of the

measured end-to-end runtime.

3.1.4 Results
We run the K-Means experiment on two clusters, the ICCS cluster and the KMAX cluster. We first detail

the ICCS experiment, and then the KMAX experiment.

FIGURE 4. K-MEANS RESULTS ON ICCS CLUSTER.

ICCS. We scale the number of Flink TaskManagers (i.e., workers) from 1 to 8. For each scaling step, we

measure four task slot configurations, whereby we scale the number of task slots from 1 to 8. The number

of tasks slots determines how many task instances can run in parallel on each Flink worker. We choose

the maximum number of task slots based on the number of vCPU cores (aka. hyperthreads) that the

machines support.

We observe a speedup when increasing the number of workers, and also when increasing the number of

task slots. We note that the primary cause of the speedup is the total number of physical CPU cores,

because 1 worker with 4 slots is equally fast as 4 workers with 1 slot each. However, once we exceed the

number of physical CPU cores at 8 slots per worker, we observe no further speedup over 4 slots (the

measurement variance for 8 workers and 8 slots is contained within the variance for 8 workers and 4 slots.

Therefore 8 slots achieve no measured speedup over 4 slots).

http://www.e2data.eu/

 Page 27 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

The maximum achieved speedup is sublinear, at 4.4x. This can be explained by the high initialization costs

of Flink. We would thus expect that the speedup increases for larger inputs.

FIGURE 5. K-MEANS RESULTS ON KMAX CLUSTER.

KMAX. We scale the number of workers from 1 to 16, and the number of task slots from 1 to 4. Note that

the ARM CPUs do not support hyperthreading, thus each task slot corresponds to a physical CPU core.

Like in the ICCS experiment, we see that the main reason for the speedup is the number of CPU cores.

One worker with four slots has the same runtime as four workers with one slot each. Therefore, this

benchmark is not bottlenecked by disk or network bandwidth.

On a single node, we observe a near-linear speedup of 3.2x when scaling task slots.

When scaling to multiple nodes, we notice that the runtime decreases from 1 to 8 to nodes. The maximum

speedup is 8.1 times. However, from 8 to 16 nodes, we observe no further speedup. This indicates that

other overheads dominate the runtime, such as the Flink initialization time, and the network

communication for the inter-worker synchronization that occurs at the end of every K-Means iteration.

3.2 Use Case Applications Performance Evaluation
In this part we discuss the implementation requirements of each UC application and the methodology we

used to achieve uniformity, replicability and reproducibility for each UC performance evaluation. We also

define the datasets utilized for the performance evaluation of the UCs implementation on Apache Flink

as well as we present and discuss the performance results extracted from each UC.

3.2.1 Methodology
As already described, we are using the Peel testing framework [4] for the performance evaluation. Peel

operates on a bundle which packages together the configuration data, datasets, and programs required

for the execution of a particular set of experiments. Hence, each UC implementation provides a Peel

http://www.e2data.eu/

 Page 28 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

Bundle. The structure of a peel Bundle includes the following top-level elements: the workload

applications, the environment configurations and experiments definitions, the data generators, the static

datasets, the archived system binaries, the Peel libraries and dependencies, and the utility scripts and files

(more details can be found in [4] Hence, each UC has created a Peel Bundle including the UC application

source code, the environment configuration and the experiments UC Peel definitions, the static datasets

or the data generators, and any potential extensions of the Peel framework capabilities. More details on

how to build a Peel Bundle can be found in https://github.com/E2Data/peel-howto.

3.2.2 Health Analytics
The health analytics UC has been implemented in Java using three different approaches:

1. Java vanilla (single-threaded).

2. Java using TornadoVM.

3. Java using Apache Flink.

The Java vanilla and Java using TornadoVM have been implemented in the same component and the user

can choose which approach wants to be executed by passing the appropriate input argument. The Java

using Apache Flink has been implemented as a different component by using the DataSet API of the Flink

framework. The repository of these components can be found here:

https://github.com/E2Data/exus_use_case

Furthermore, for the Apache Flink version there is another repository which is using the peel framework

in order to produce the benchmarks results in ICCS and KMAX clusters. The repository for the Peel bundle

of health UC is here: https://github.com/E2Data/healthUC-peel

The prerequisites for the health analytics UC are:

· Java 8

· Maven 3.6.0

· TornadoVM

· Apache Flink 1.9.1

· Hadoop 3.2.1

In both cases (TornadoVM and Apache Flink), the user should pass some arguments to the system in order

to run the logistic regression algorithm. These arguments are:

· Number of iterations → k

· Learning rate → a

· Regularization parameter → r

· Number of features → n

· Which of the 2 dataset (small/big) to use→ d

http://www.e2data.eu/
https://github.com/E2Data/peel-howto
https://github.com/E2Data/exus_use_case
https://github.com/E2Data/healthUC-peel

 Page 29 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

The number of iterations (k) is a crucial hyperparameter because it significantly affects the performance

of the algorithm in terms of execution time

The output results for Java, TornadoVM and Apache Flink are identical and contain:

1. execution times

2. evaluation metrics results, such as precision, recall, and F1 measurements.

For Java vanilla and TornadoVM the results are printed in the console log of the application, while in Flink

the results are saved in a file.

For this deliverable, the main results that will be described and analyzed are based on execution time of

the training of logistic regression algorithm.

In Section 3.2.2.1 we describe the datasets that are used for the health analytics UC and in Section 3.2.2.2

we present all the benchmark results for each of the implemented approaches.

3.2.2.1 Datasets
For this UC we used two different sizes of input datasets. The first one is a small dataset that contains

around 80K rows and 82 features, while the other one is a larger dataset which contains around 2M rows

and 82 features. The size of the small dataset is 147MB, while the size of the large dataset is 4.6GB.

The large dataset is a byproduct of the small dataset in order to better evaluate TornadoVM and Apache

Flink in terms of execution time with Java vanilla. For the data synthesis the SMOTE algorithm [5] has been

used in order to increase the size of the dataset in an efficient way and keep as much as possible the same

distribution with the small dataset.

3.2.2.2 Results
Regarding the benchmark results, the execution time of the Java implementation of the logistic regression

algorithm will be compared with the execution times of those on Apache Flink and TornadoVM. For each

implementation, the tests have been performed on the ICCS and KMAX clusters.

Below are the initial results from the small dataset (around 80K rows - 146MB) and large dataset (around

2M rows - 4.6GB). The Java and TornadoVM results have been performed in the UNIMAN server and the

Apache Flink results are performed to the ICCS cluster.

TABLE 8. INITIAL RESULTS OF EXUS USE CASE FOR JAVA, TORNADOVM, APACHE FLINK (USING ONLY ONE JOB MANAGER

AND 1, 3 AND 10 TASK SLOTS) FOR THE SMALL DATASET.

Kernel

/Number

of

Iterations

Flink with 1

CPU core

Flink with 3

CPU cores

Java Tornado Flink with 10

CPU cores

50 15 sec 8 sec 3.43 sec 1.11 sec 4 sec

100 26 sec 13 sec 7 sec 1.62 sec 7 sec

http://www.e2data.eu/

 Page 30 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

200 49 sec 24 sec 13.92 sec 2.21 sec 10 sec

400 92 sec 40 sec 27.56 sec 3.46 sec 15 sec

1000 231 sec 96 sec 70 sec 7 sec 33 sec

TABLE 9. INITIAL RESULTS OF EXUS USE CASE FOR JAVA, TORNADOVM, APACHE FLINK (USING ONLY ONE JOB MANAGER

AND 10 TASK SLOTS) FOR THE BIG DATASET.

Kernel

/Number

of

Iterations

Flink with 1

CPU core

Flink with 3

CPU cores

Java Tornado Flink with 10

CPU cores

1000 - - 45 min 3-4 minutes 17 minutes

Below are the results of the small dataset with 1000 iterations and the results of the large dataset using

10 iterations running on Apache Flink.

FIGURE 6. EXECUTION TIME OF 1000 ITERATIONS LOGISTIC REGRESSION FOR THE SMALL DATASET USING 1,2,4,8 TASK

SLOTS AND 1,2,4,8 WORKERS.

http://www.e2data.eu/

 Page 31 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

FIGURE 7. EXECUTION TIME OF 10 ITERATIONS LOGISTIC REGRESSION FOR THE BIG DATASET USING 1,2,4,8 TASK SLOTS

AND 1,2,4,8 WORKERS.

Please note that in the execution time of Java and TornadoVM only the training time of the model is

accounted. However, in the Flink version, the time to read the dataset from a binary format is also counted

in the execution time. The impact of this overhead depends on the number of iterations. As Figure 7

shows, the scale out experiments perform well on the big dataset. Performance increases with the

number of nodes. Increasing the number of task slots improves performance up to four task slots. On the

other hand, in the small dataset, scalability is negatively affected.

3.2.3 Natural Language Processing
NLP kernels work on dictionaries. A dictionary can be a set of words or phrases in text (UTF16 character)

or compiled binary format. The compiled format can contain indices for quick recognition of a word as

well as information related with the word; e.g., morphological information as lemma, stem, Part Of

Speech (POS), etc., syntactic information as properties of accompanied words on left or right, specialised

phrases, etc., semantic information as sentiment, synonyms, antonyms, etc. and statistical information as

frequencies per document and corpus, TFIDF scores, etc.

The kernels are classified in two classes,

● the ones that work only on dictionaries without any extra input (clustering kernels) and

● the ones that implement a function on streamed input using the dictionaries (fuzzy matching

kernels)

Kernels are also classified on the type of dictionary they use. We have the Word Distance Kernels (WDK)

where the lexicon is a list of words (or phrases), the simple Directed Acyclic Word Graphs Kernels (DAWGK)

where the dictionary is a binary compressed graph data structure storing words and used for fuzzy

matching and the Compressed Trie Kernels (CTK) where there are indexes from words to any useful

0

50

100

150

200

250

1 2 4 8

Worker

R
u
n

ti
m

e
 [
s
e
c
o
n

d
s
]

Task slots 1 2 4 8

lr.iccs.scaleīout on iccs cluster

http://www.e2data.eu/

 Page 32 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

information. Compressed Tries (C-Tries) have a graph structure similar to DAWG permitting fuzzy

matching functionality on words they store.

The kernels implemented are:

• WDK - Levenshtein distance used for lexicographic ranking word of the dictionary with an input word.

The kernel outputs the distances of the dictionary word with the input word.

• K-Means clustering is using the Euclidean distance between the documents of the dataset. The

algorithm takes as input a C-Trie representation of the dataset and the parameter K. C-Trie holds the

index from words to the documents they appear as well as the frequencies.

• Hierarchical clustering is using Cosine similarity between documents. The input is the same C-Trie that

is used in K-Means clustering. The ranking now is based on the angles between documents. Each

document is represented as a vector with dimension of the vocabulary size used in the dataset and

values the TFIDF scores of the word.

• BM25 kernel implements a search engine function which takes as input a phrase (sequence of words)

and returns the most relative documents in the dataset. BM25 is a variation of TFIDF algorithm used

for indexing and searching document collections.

The common functionality of all kernels includes the configuration to run the algorithm either on the JVM

without acceleration, run it using TornadoVM, and run it both in JVM and TornadoVM and compare the

results, the times and the acceleration rate.

Our first set of experiments were for the current version of the NLP kernels and aimed to showcase GPU

speedup with TornadoVM on NLP kernels execution, within the following runs:

Å Execute lexicographical ranking kernel with two different dictionaries (person names, spelling

lexicon)

Å Execute two clustering algorithms (Hierarchical, K-Means) on a corpus of tweets

There were cases where the Tornado could not produce a correct kernel due to the complex flow of the

kernel function. In these cases, we modified the kernel code manually and used the prebuilt functionality

of Tornado in order to run the kernel from Java code. The Java classes that implement the kernel

algorithms offer the configuration to use either the prebuilt kernel or the Tornado produced kernel code.

The next two sets of experiments show the performance behavior after the integration of the kernels with

Flink, on a local cluster setup and on ICCS cluster, for:

Å lexicographical ranking kernel

Å K-Means clustering algorithm

http://www.e2data.eu/

 Page 33 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

3.2.3.1 Datasets
For the initial testing of the kernel algorithms we use open datasets on which we apply the code kernels

in both Java and Tornado versions.

For the Word Distance Kernel (Levenshtein) we use public domain lexicons from the Moby Project [6] In

detail, we tested different types and sizes of lexicons, e.g.

Å Names.txt: 159,624 Most common names used in the United States and Great Britain

Å Single.txt: 354,984 Single words excluding proper nouns, acronyms, compound words and

phrases, but including archaic words and significant variant spellings

For the test of clustering and search engine functions we used datasets from Kaggle [7] Specifically, we

used:

Å The FIFA World Cup 2018 Tweets https://www.kaggle.com/rgupta09/world-cup-2018-tweets

a random collection of 530K tweets.

Å Wine reviews derived from WineEnthusiast during the week of June 15th, 2017. The data set

contain 150K of wine reviews https://www.kaggle.com/zynicide/wine-reviews

Å Russian Troll Tweets. 3M https://www.kaggle.com/fivethirtyeight/russian-troll-tweets

The next phase of our evaluation utilizes datasets that are related to the NLP applications that require

acceleration and include:

● Hotel and destination reviews: The datasets used demonstrate the functionality of the application

and specifically the performance characteristics and acceleration gain will be open datasets from

Kaggle

○ https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe

○ https://www.kaggle.com/datafiniti/hotel-reviews

○ https://www.kaggle.com/rtatman/deceptive-opinion-spam-corpus

● Location addresses operate on a labeled dataset (500K-1M addresses) and their functionality is

tested against an equally sized test (unlabeled) dataset (around 500K).

3.2.3.2 Results
Results using Tornado on a local GPU setup. The evaluation of the new code kernels took place on the

following GPU setup:

Å GPU: GTX 970

Å Number of GPUs: 13

http://www.e2data.eu/
https://en.wikipedia.org/wiki/Name
https://en.wikipedia.org/wiki/Name
https://en.wikipedia.org/wiki/Great_Britain
https://en.wikipedia.org/wiki/Great_Britain
https://en.wikipedia.org/wiki/Archaism
https://en.wikipedia.org/wiki/Archaism
https://en.wikipedia.org/wiki/Variant_spellings
https://en.wikipedia.org/wiki/Variant_spellings
https://www.kaggle.com/rgupta09/world-cup-2018-tweets
https://www.kaggle.com/zynicide/wine-reviews
https://www.kaggle.com/fivethirtyeight/russian-troll-tweets
https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe
https://www.kaggle.com/datafiniti/hotel-reviews
https://www.kaggle.com/rtatman/deceptive-opinion-spam-corpus

 Page 34 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

Å Memory: 4 GB

The performance gains we got running the kernels under TornadoVM with respect to the JVM version are

summarised in the tables below.

For the Levenshtein distance (WDK) we used two different sizes of vocabularies and input sizes, as shown

in Table 10.

TABLE 10. LEVENSHTEIN DISTANCE (WDK) PARAMETERS.

Vocabulary size
(nr of words)

Input Tornado speedup Content type

159624 100 4.4362x Vocabulary consists of person names

159624 200 6.7354x Vocabulary consists of person names

354984 100 7.5789x Vocabulary consists of English words
(spelling checker dictionary)

354984 200 9.8268x Vocabulary consists of English words
(spelling checker dictionary)

For Hierarchical classification using the cosine similarity metric (TFIDF), we obtained the following results

(having q-gram value equal to 0, which means plain words)

TABLE 11. HIERARCHICAL CLASSIFICATION USING THE COSINE SIMILARITY METRIC (TFIDF) RESULTS.

Vocabulary size

(nr of distinct

words in the

document)

Input (number of

document)

Average

Document Length

(nr of words per

document)

Tornado

speedup

Content type

38446 114239 13 28.2931x Documents are

tweet messages

about FIFA 2019

For K-Means clustering, with the two kernels KMeansEvaluateGroups() and KMeansCalculateCentroids(),

the two kernel functions are running in different tasks in a loop using the same dataset as the previous

http://www.e2data.eu/

 Page 35 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

hierarchical clustering kernel, we got the following results (having q-gram value equal to 0, which means

plain words) for 32 rounds of the algorithm.

TABLE 12. NLP K-MEANS CLUSTERING KERNELS RESULTS.

Vocabulary size

(nr of distinct

words in the

document)

Input (number of

document)

Average

Document Length

(nr of words per

document)

Tornado

speedup

Content type

38446 114239 13 9.7761x Documents are

tweet messages

about FIFA 2019

Results from integrated Flink version on local cluster. For the Levenshtein distance (WDK) the cluster

setup and the results are described below.

Å 1 CentOS 8, 1 JobManager, 2 TaskManagers, VM, 16GB RAM

Å 1 CentOS 7, 4 TaskManagers, 32G RAM

Å 1 Red Hat 7, 4 TaskManagers, 32G RAM

TABLE 13. LEVENSHTEIN DICTIONARY SIZE V=159624 WORDS, INPUT SIZE S=10000 WORDS CLUSTER SETUP.

 P

Number

Of processors

Runtime

(ms)

Speedup

(x)

Case 1 1 6164000 1

Case 1.parallel 10 1043000 5,90

For the K-Means clustering, the evaluation of the code kernels integrated with Flink was performed on

the following 3-node cluster setup:

Å 1 CentOS 8, 1 JobManager, 0 TaskManagers, VM, 16GB RAM

Å 1 CentOS 7, 4 TaskManagers, 32GB RAM

Å 1 Red Hat 7, 4 TaskManagers, 32GB RAM

http://www.e2data.eu/

 Page 36 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

For the K-Means algorithm, the obtained results are illustrated in Table 14.

TABLE 14. NLP K-MEANS CLUSTERING FLINK RESULTS.

 P

Number

Of

processors

I

Number

of

iterations

K

Number

of

centroids

q V

Vocabulary

Size

(i.e number

of

dimensions)

N

Number of

Documents

(i.e.

number of

points)

Runtime

(ms)

Speedup

(x)

Case

1

1 10 120 4 18715 11439 225500 1

Case

1.pa

rallel

8 10 120 4 18715 11439 91830 2,455625

Case

2

1 10 500 0 38446 114239 18610852 1

Case

2.pa

rallel

8 10 500 0 38446 114239 11278737 1,650083

http://www.e2data.eu/

 Page 37 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

FIGURE 8. DURATION OF TASKS PERFORMING K-MEANS CLUSTERING MEASURED IN LOCAL CLUSTER.

Results from integrated Flink version on ICCS cluster. For the Levenshtein algorithm with the use of Peel

bundle on the ICCS platform, the following performance results were produced (Figure 9). Three runs of

the same experiment are performed, each one showing the scaling speedup as the number of nodes and

tasks per node is increasing. In Figure 9 we present the results for Levenshtein dictionary size of 159.624

words, input size 10.000 words for all runs at different cluster setups of ICCS cluster.

http://www.e2data.eu/

 Page 38 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

FIGURE 9. NLP LEVENSHTEIN ON ICCS CLUSTER.

TABLE 15. LEVENSHTEIN DICTIONARY SIZE V=159624 WORDS, INPUT SIZE S=10000 WORDS / SPEEDUP AS NR OF

NODES IS INCREASING ON ICCS CLUSTER.

Nr of Nodes 1 Node 2 Nodes 4 Nodes 8 Nodes

Speedup (x)

1 Task per

node

1,00 1,93 3,47 5,49

2 Tasks per

node

1,00 1,85 3,10 4,32

4 Tasks per

node

1,00 1,65 2,55 3,25

8 Tasks per

node

1,00 1,52 2,00 2,18

TABLE 16. SPEEDUP AS NR OF TASK PER NODE IS INCREASING.

Nr of Nodes 1 Node 2 Nodes 4 Nodes 8 Nodes

Speedup (x)

1 Task per

node

1,00 1,00 1,00 1,00

http://www.e2data.eu/

 Page 39 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

2 Tasks per

node

1,80 1,73 1,61 1,42

4 Tasks per

node

3,44 2,94 2,52 2,03

8 Tasks per

node

5,79 4,55 3,34 2,29

TABLE 17. LEVENSHTEIN DICTIONARY SIZE V=159624 WORDS, INPUT SIZE S=10000 WORDS / SPEEDUP AS NR OF

NODES AND TASKS PER NODE ARE INCREASING ON ICCS CLUSTER.

Nr of Nodes 1 Node 2 Nodes 4 Nodes 8 Nodes

Speedup (x)

1 Task per

node

1,00 1,93 3,47 5,49

2 Tasks per

node

1,80 3,33 5,58 7,78

4 Tasks per

node

3,44 5,68 8,76 11,18

8 Tasks per

node

5,79 8,79 11,60 12,61

For K-Means clustering with the use of Peel bundles on the ICCS platform, the following performance

results were produced, when we run the algorithm with the following parameters:

· K=500, I=20, V=11635, N=11439, where:

K is the number of centroids (clusters)

I is the number of iterations

V is the vocabulary size (i.e. number of dimensions)

N is the number of documents (i.e. number of points)

Three runs of the same experiment are performed, each one showing the speedup as the number of nodes

and tasks per node is increasing as presented in Figure 10.

http://www.e2data.eu/

 Page 40 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

FIGURE 10. NLP K-MEANS ON ICCS CLUSTER.

TABLE 18. K-MEANS CLUSTERING FOR K=500, I=20, V=11635, N=11439 / SPEEDUP AS NR OF NODES IS INCREASING

ON ICCS CLUSTER.

Nr of Nodes 1 Node 2 Nodes 4 Nodes 8 Nodes

Speedup (x)

1 task per

node

1,00 1,01 1,21 1,29

2 tasks per

node

1,00 0,84 1,28 1,19

4 tasks per

node

1,00 1,02 1,07 1,15

8 tasks per

node

1,00 1,56 1,82 1,30

TABLE 19. K-MEANS CLUSTERING FOR K=500, I=20, V=11635, N=11439 / SPEEDUP AS NR OF TASKS PER NODE IS

INCREASING ON ICCS CLUSTER.

Nr of Nodes 1 Node 2 Nodes 4 Nodes 8 Nodes

Speedup (x)

http://www.e2data.eu/

 Page 41 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

1 tasks per
node

1,00 1,00 1,00 1,00

2 tasks per
node

1,44 1,19 1,52 1,32

4 tasks per
node

3,29 3,33 2,90 2,92

8 tasks per
node

2,86 4,41 4,28 2,89

TABLE 20. K-MEANS CLUSTERING FOR K=500, I=20, V=11635, N=11439 / SPEEDUP AS NR OF NR OF NODES AND

TASKS PER NODE ARE INCREASING ON ICCS CLUSTER.

Nr of Nodes 1 Node 2 Nodes 4 Nodes 8 Nodes

Speedup (x)

1 Task per

Node

1,00 1,01 1,21 1,29

2 Tasks per

Node

1,44 1,20 1,84 1,70

4 Tasks per

node

3,29 3,37 3,52 3,77

8 Tasks per

Node

2,86 4,46 5,19 3,73

wŜǎǳƭǘǎ ŦǊƻƳ ƛƴǘŜƎǊŀǘŜŘ Cƭƛƴƪ ǾŜǊǎƛƻƴ ƻƴ ɼɾɮʋ ŎƭǳǎǘŜǊΦ For the Levenshtein algorithm with the use of

Peel experiments on the ΚΜΑΧ platform, the following performance results shown in Figure 11 are

produced. Three runs of the same experiment are performed, each one showing the speedup as the

number of nodes and tasks per node is increasing. As in the ICCS cluster case, in Figure 11 we present the

results for Levenshtein dictionary size of 159.624 words, input size 10.000 words for all runs at different

cluster setups of the KMAX cluster.

http://www.e2data.eu/

 Page 42 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

FIGURE 11. NLP LEVENSHTEIN ON KMAX CLUSTER.

TABLE 21. LEVENSHTEIN DICTIONARY SIZE V=159624 WORDS, INPUT SIZE S=10000 WORDS / SPEEDUP AS NR OF

NODES IS INCREASING ON KMAX CLUSTER.

Nr of

Nodes

1 Nodes 2 Nodes 4 Nodes 8 Nodes 16 Nodes

Speedup (x)

1 Task per

node

1,00 1,76 3,07 5,53 9,29

2 Tasks

per node

1,00 1,79 2,96 5,07 7,35

4 Tasks

per node

1,00 1,74 2,88 4,66 6,68

TABLE 22. LEVENSHTEIN DICTIONARY SIZE V=159624 WORDS, INPUT SIZE S=10000 WORDS / SPEEDUP AS NR OF TASKS

PER NODE IS INCREASING ON KMAX CLUSTER.

Nr of

Nodes

1 Nodes 2 Nodes 4 Nodes 8 Nodes 16 Nodes

Speedup (x)

1 Task per

node

1,00 1,00 1,00 1,00 1,00

2 Tasks

per node

1,90 1,93 1,83 1,74 1,50

http://www.e2data.eu/

 Page 43 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

4 Tasks

per node

3,41 3,39 3,21 2,87 2,45

TABLE 23. LEVENSHTEIN DICTIONARY SIZE V=159624 WORDS, INPUT SIZE S=10000 WORDS / SPEEDUP AS NR OF NR OF

NODES AND TASKS PER NODE ARE INCREASING ON KMAX CLUSTER.

Nr of

Nodes

1 Nodes 2 Nodes 4 Nodes 8 Nodes 16 Nodes

Speedup (x)

1 Task per

node

1,00 1,76 3,07 5,53 9,29

2 Tasks

per node

1,90 3,39 5,62 9,63 13,96

4 Tasks

per node

3,41 5,95 9,84 15,89 22,81

For K-Means clustering with the use of Peel bundles on the KMAX platform, the following performance

results were produced, when we run the algorithm with the following parameters:

· K=200, I=20, V=11635, N=11439, where:

K is the number of centroids (clusters)

I is the number of iterations

V is the vocabulary size (i.e. number of dimensions)

N is the number of documents (i.e. number of points)

Three runs of the same experiment are performed, each one showing the speedup as the number of nodes

and tasks per node is increasing as presented in Figure 12.

http://www.e2data.eu/

 Page 44 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

FIGURE 12. NLP K-MEANS ON KMAX CLUSTER.

TABLE 24. K-MEANS CLUSTERING FOR K=200, I=20, V=11635, N=11439 / SPEEDUP AS NR OF NODES IS INCREASING

ON KMAX CLUSTER.

Nr of

Nodes

1 Nodes 2 Nodes 4 Nodes 8 Nodes 16 Nodes

Speedup (x)

1 Task per

node

1,00 1,24 1,40 1,37 1,41

2 Tasks

per node

1,00 1,36 1,31 1,63 1,48

4 Tasks

per node

1,00 1,02 1,37 1,63 1,49

TABLE 25. K-MEANS CLUSTERING FOR K=200, I=20, V=11635, N=11439 / SPEEDUP AS NR OF TASKS PER NODE IS

INCREASING ON KMAX CLUSTER.

Nr of

Nodes

1 Nodes 2 Nodes 4 Nodes 8 Nodes 16 Nodes

Speedup (x)

1 Task per

node

1,00 1,00 1,00 1,00 1,00

2 Tasks

per node

1,24 1,36 1,17 1,48 1,31

http://www.e2data.eu/

 Page 45 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

4 Tasks

per node

1,89 1,55 1,85 2,24 2,00

TABLE 26. K-MEANS CLUSTERING FOR K=500, I=20, V=11635, N=11439 / SPEEDUP AS NR OF NR OF NODES AND

TASKS PER NODE ARE INCREASING ON KMAX CLUSTER.

Nr of

Nodes

1 Nodes 2 Nodes 4 Nodes 8 Nodes 16 Nodes

Speedup (x)

1 Task per

node

1,00 1,24 1,40 1,37 1,41

2 Tasks

per node

1,24 1,70 1,63 2,02 1,84

4 Tasks

per node

1,89 1,93 2,59 3,07 2,82

3.2.4 Green Buildings
The Sparks Analytics Engine utilized in the Green Buildings UC is a processing engine that provides

analytics and storage for persisting extracted results. It receives events from multiple sensors and

executes aggregate operations on them. Sensors produce (periodically/asynchronously) events that are

sent to the Sparks Analytics Engine. These events are usually tuples of pairs: value and timestamp. All data

received is collected and forwarded to a queue. From there, it gets processed in real time by the

Processing Engine cluster. The computed analytics summaries are stored in a NoSQL database. Each

Sparks Engine processing job has the ability to be easily modified, in order to accommodate aggregation

operations. The engine consists of tasks responsible for a specific type of sensor. The chain of aggregators,

called process blocks in Sparks Analytics Engine, aggregate data for specific time intervals. Events reaching

the Analytics Engine message broker are processed consecutively in a time-window manner calculating

aggregation results.

The implementation of the Green Buildings Analytics UC has been modified to meet the requirements of

the current status of the E2Data execution engine. Based on this, the processing engine has been adapted

to a batch processing version utilizing the Apache Flink DataSet API while normally the Sparks Analytics

Engine operates on stream processing. To achieve efficient data analytics provision, the most crucial factor

data is the processing time of a batch of sensor data. Based on this the preliminary results presented here

evaluate the processing time that the Flink version of Sparks Analytics engine achieves. The Green

Buildings UC Peel Bundle used for the following evaluation results can be found under the project’s Git

repository: https://github.com/E2Data/e2data-gb-peel

3.2.4.1 Datasets
For the performance evaluation of the Apache Flink DataSet version of the Green Buildings Analytics UC

we are using a synthetic input dataset simulating the processing of 7.200.000 data entries for a time

period of 60 minutes. In detail, the evaluated dataset contains input data from 2.000 sensors generating

http://www.e2data.eu/
https://github.com/E2Data/e2data-gb-peel

 Page 46 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

data with one-minute granularity per sensor for the time period of one hour. The format of the Green

Buildings dataset is comma separated values with each value representing the unique identifier of the

sensor, the timestamp of the event, and the actual value of the measurement. Table 27 summarizes the

Green Buildings dataset characteristics.

TABLE 27. GREEN BUILDINGS DATASET CHARACTERISTICS.

Description Used in experiment Size (MB) Data entries
Synthetic dataset Green Buildings 330 7.200.000

3.2.4.2 Results
The performance evaluation results of the Green Buildings UC are performed in a combined scale-

out/scale-up way on both the ICCS x86 and KMAX Aarch64 clusters. The number of

TaskManagers/Workers are increased to measure the influence of scaling out the cluster while at the

same time the number of the task slots per TaskManager/Worker is increased to, in order to investigate

the scaling up impact on each individual TaskManager/Worker of the cluster.

Figure 13 and Figure 14 present the execution time in seconds for the Green Buildings UC Flink

implementation on the KMAX Aarch64 and ICCS x86 testbeds respectively. In both figures, we present

runtime results in seconds for the Green Buildings Peel Bundle scaling out the number

TaskManagers/Workers and scaling out the number of task slots.

FIGURE 13. GREEN BUILDINGS RUNTIME ON KMAX CLUSTER.

http://www.e2data.eu/

 Page 47 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

FIGURE 14. GREEN BUILDINGS RUNTIME ON X86 CLUSTER.

The first immediate and anticipated result is that increasing the total number of task slots on the clusters

always results in improved runtimes of the evaluated application. Moreover, we can notice that scaling

out the cluster provides higher gains than scaling up the task slots on each node. Moreover, as already

noticed in the K-Means discussion, the improvement on the runtime performance tends to be sublinear

but this is not always the case on both clusters due to parameters other than the available task slots such

as the Flink initialization time, and the network communication for the inter-worker synchronization.

Finally, an anticipated notice comparing the results of the two testbeds, is the noticeable higher

performance of the x86 cluster against the Aarch64 cluster due to the type of computational resources of

the two testbeds.

3.3 Integration Evaluation Results
As described in Section 1.1, the v2.0 of the Apache Flink-TornadoVM integration achieves the same

functionality with v1.0 in terms of heterogeneous hardware execution. However, it abstracts away the

hardware acceleration from the Flink user by transparently executing the unmodified Flink application on

the hardware accelerator. Hence, the API that was introduced in v1.0 has been deprecated and developers

can use their unmodified code with the E2Data software stack. In order to assess the performance of v2.0,

we compare the end-to-end execution times of the K-Means algorithm of versions 1.0 and 2.0. We should

observe identical performance with a slight performance benefit for v2.0 due to the added optimization

of reading the data directly from the byte buffers of the JVM, rather than performing array copies as in

v1.0.

Figure 15 shows the relative speedup of v2.0 against V1.0 while scaling the input data sizes of K-Means.

The experiment has been performed on an integrated Intel GPU (HD 620).

http://www.e2data.eu/

 Page 48 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

FIGURE 15. RELATIVE SPEEDUP OF V2.0 AGAINST V1.0 OF THE APACHE FLINK-TORNADOVM INTEGRATION.

As shown in Figure 15, v2.0 outperforms v1.0 up to 30%. However, as the data sizes increase, the
performance of v2.0 drops due to the memory pressure created to the JVM. The extra memory overhead
results from the additional dynamically created classes that bind the Flink code with TornadoVM.
However, since these classes will be created only once and will be consequently reused, it is foreseen that
these overheads will not manifest for long running applications. In addition, on larger machines which
have more memory, even if this overhead exhibits temporal behavior, it will be further ameliorated.

http://www.e2data.eu/

 Page 49 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

4. Conclusions
This document presented the intermediate outcomes of WP6 on the integration, configuration,

deployment and evaluation of the E2Data software stack and the UCs applications. We presented here

the v2.0 integration of Apache Flink and TornadoVM detailing the differences and improvements

compared to v1.0 and we also provided a comparative evaluation between the two versions highlighting

the introduction of transparent hardware acceleration without exposing any additional APIs to Apache

Flink in terms of programmability. We further described the current status of the UCs applications porting

on Apache Flink.

Afterwards, we presented the software components realizing the E2Data deployment environment, i.e.

Apache Flink, Apache Hadoop YARN and TornadoVM and we also presented the current status of the x86

and Aarch64 E2Data testbeds providing the technical details of them.

In the last part we described the test suite utilized and extended to meet the requirements of the E2Data

performance evaluation providing software and performance portability on the heterogeneous execution

nodes of E2Data and ensuring reproducibility for the UCs applications and the benchmarking algorithms.

Next we presented and discussed the baseline performance results for the UCs implementation ported

on Apache Flink on both testbeds and we finally presented and analyzed the v2.0 integration performance

evaluation utilizing the K-Means algorithm against the version 1.0 of the integration.

Future steps towards the final deliverable of WP6 include the final version of E2Data components stack

integration demonstrating the correct operation of entire E2Data system on large-scale data sets on

heterogeneous based accelerators on both x86 and Aarch64 architectures. Moreover, we will provide

reports on performance/power gains on all UCs for the achievement of the project’s requirements. To

this direction all the UCs implementations will be finalized and fine-tuned to their final version and the

testing framework will be further extended and finalized as a result of more intensive testing. Finally,

power consumption monitoring capabilities will be added to the KMAX cluster and integrated with the

Peel test framework.

http://www.e2data.eu/

 Page 50 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

Bibliography
[1] D6.2 Prototype v1 & Preliminary Evaluation, E2Data Project Public Deliverable

[2] Apache Flink. https://flink.apache.org

[3] Apache Hadoop YARN. https://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-

site/YARN.html

[4] TU Berlin. Peel Framework. http://peel -framework.org/

[5] Chawla, Nitesh V., et al. SMOTE: synthetic minority over-sampling technique. Journal of artificial

intelligence research 16 (2002): 321-357

[6] Moby Project. https://en.wikipedia.org/wiki/Moby_Project

[7] Kaggle. https://www.kaggle.com

http://www.e2data.eu/
https://flink.apache.org/
https://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/YARN.html
http://peel-framework.org/
https://en.wikipedia.org/wiki/Moby_Project
https://www.kaggle.com/

 Page 51 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

Figures
Figure 1. Example Input/Output Index Array. ... 15

Figure 2. Power Consumption for Green Buildings UC on ICCS x86 Cluster. .. 24

Figure 3. Power Consumption for K-Means on ICCS X86 Cluster. ... 24

Figure 4. K-Means Results On ICCS Cluster. .. 26

Figure 5. K-Means Results On KMAX Cluster... 27

Figure 6. Execution time of 1000 iterations logistic regression for the small dataset using 1,2,4,8 task

slots and 1,2,4,8 workers. .. 30

Figure 7. Execution time of 10 iterations logistic regression for the big dataset using 1,2,4,8 task slots

and 1,2,4,8 workers. .. 31

Figure 8. Duration of Tasks Performing K-Means Clustering Measured in Local Cluster. 37

Figure 9. NLP Levenshtein on ICCS Cluster. ... 38

Figure 10. NLP K-Means on ICCS Cluster. .. 40

Figure 11. NLP Levenshtein on KMAX Cluster. .. 42

Figure 12. NLP K-Means on KMAX Cluster. ... 44

Figure 13. Green Buildings Runtime on KMAX Cluster. ... 46

Figure 14. Green Buildings Runtime on x86 Cluster. ... 47

Figure 15. Relative speedup of v2.0 against v1.0 of the Apache Flink-TornadoVM Integration. 48

http://www.e2data.eu/

 Page 52 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

Tables
Table 1. E2Data Baseline Deployment Software Components. .. 20

Table 2. KALEAO (KMAX) Aarch64 Testbed Specifications. ... 20

Table 3. FPGA Board Specifications. .. 21

Table 4. Mali GPU Board Specifications. ... 21

Table 5. ICCS x86 Cluster Specifications. ... 21

Table 6. Performance Evaluation Framework Software Configuration. ... 25

Table 7. K-Means Benchmarking Algorithm Configuration. .. 26

Table 8. Initial results of Exus use case for Java, TornadoVM, Apache Flink (using only one job manager

and 1, 3 and 10 task slots) for the small dataset. .. 29

Table 9. Initial results of Exus use case for Java, TornadoVM, Apache Flink (using only one job manager

and 10 task slots) for the big dataset. ... 30

Table 10. Levenshtein Distance (WDK) Parameters. ... 34

Table 11. Hierarchical classification using the cosine similarity metric (TFIDF) Results. 34

Table 12. NLP K-Means Clustering Kernels Results. .. 35

Table 13. Levenshtein dictionary size V=159624 words, input size S=10000 words Cluster Setup. 35

Table 14. NLP K-Means clustering Flink Results. ... 36

Table 15. Levenshtein Dictionary Size V=159624 Words, Input Size S=10000 words / Speedup as Nr of

Nodes is increasing on ICCS Cluster... 38

Table 16. Speedup as Nr of Task per Node is Increasing. .. 38

Table 17. Levenshtein dictionary size V=159624 words, input size S=10000 words / Speedup as Nr of

Nodes and Tasks Per Node are Increasing on ICCS Cluster. .. 39

Table 18. K-Means clustering for K=500, I=20, V=11635, N=11439 / Speedup as Nr of Nodes is increasing

on ICCS Cluster. .. 40

Table 19. K-Means clustering for K=500, I=20, V=11635, N=11439 / Speedup as Nr of Tasks per Node is

increasing on ICCS Cluster. .. 40

Table 20. K-Means clustering for K=500, I=20, V=11635, N=11439 / Speedup as Nr of Nr of Nodes and

Tasks Per Node are increasing on ICCS Cluster. .. 41

Table 21. Levenshtein dictionary size V=159624 words, input size S=10000 words / Speedup as Nr of

Nodes is increasing on KMAX Cluster. ... 42

http://www.e2data.eu/

 Page 53 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

Table 22. Levenshtein dictionary size V=159624 words, input size S=10000 words / Speedup as Nr of

Tasks Per Node is increasing on KMAX Cluster. .. 42

Table 23. Levenshtein dictionary size V=159624 words, input size S=10000 words / Speedup as Nr of Nr

of Nodes and Tasks Per Node are increasing on KMAX Cluster. ... 43

Table 24. K-Means clustering for K=200, I=20, V=11635, N=11439 / Speedup as Nr of Nodes is increasing

on KMAX Cluster. ... 44

Table 25. K-Means clustering for K=200, I=20, V=11635, N=11439 / Speedup as Nr of Tasks Per Node is

increasing on KMAX Cluster. ... 44

Table 26. K-Means clustering for K=500, I=20, V=11635, N=11439 / Speedup as Nr of Nr of Nodes and

Tasks Per Node are increasing on KMAX Cluster. ... 45

Table 27. Green Buildings Dataset Characteristics. ... 46

http://www.e2data.eu/

 Page 54 of 54

www.e2data.eu

D6.3 Prototype v2 & Intermediate

Evaluation

Abbreviations
¶ AM: ApplicationMaster

¶ API: Application Programming Interface

¶ C-Tries: Compressed Tries

¶ CPU: Central Processing Unit

¶ CTK: Compressed Trie Kernels

¶ DAWGK : Directed Acyclic Word Graphs Kernels

¶ DFS: Distributed File System

¶ FPGA: Field-Programmable Gate Array

¶ GPU: Graphics Processing Unit

¶ IoT: Internet­ of Things

¶ JAR: Java Archive

¶ JIT: Just In Time

¶ JVM: Java Virtual Machine

¶ NLP: Natural Language Processing

¶ PDU: Power Distribution Unit

¶ POJO: Plain Old Java Object

¶ POS Part Of Speech

¶ RM: Resource Manager

¶ UC: Use Case

¶ UDF: User Defined Function

¶ WDK: Word Distance Kernels

http://www.e2data.eu/

	Executive Summary
	Table of Contents
	Introduction
	1. E2Data Prototype (v2)
	1.1. E2Data (v2) Integration
	1.2. E2Data (v2) Use Case Applications

	2. E2Data Deployment
	2.1 Deployment Environment
	2.2 Testbeds
	2.2.1 KMAX Aarch64 Testbed
	2.2.2 ICCS x86 Testbed

	3. Performance Evaluation Results
	3.1 E2Data Platform Performance Evaluation
	3.1.1 Methodology
	3.1.2 Benchmarking Algorithms
	3.1.3 Datasets
	3.1.4 Results

	3.2 Use Case Applications Performance Evaluation
	3.2.1 Methodology
	3.2.2 Health Analytics
	3.2.2.1 Datasets
	3.2.2.2 Results
	3.2.3 Natural Language Processing
	3.2.3.1 Datasets
	3.2.3.2 Results
	3.2.4 Green Buildings
	3.2.4.1 Datasets
	3.2.4.2 Results

	3.3 Integration Evaluation Results

	4. Conclusions
	Bibliography
	Figures
	Tables
	Abbreviations

