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Executive Summary 
This deliverable reports the progress in the integration, configuration and deployment of the E2Data 

software stack on the heterogeneous execution environments of the E2Data project. It also documents 

the Use Case applications implementation porting to Apache Flink. It also describes the current status of 

the two testbeds of the E2Data project and presents the performance evaluation methodology and 

results. 

This document comes to extend the deliverable of the first version of the E2Data describing first the 

integration v2.0 of the Apache Flink and TornadoVM frameworks. In a nutshell, v2.0 improves upon v1.0 

in terms of programmability since v2.0 provides transparent hardware acceleration without exposing any 

additional APIs to Apache Flink. Afterwards, we describe the current status of the implementation of the 

Use Cases applications on Apache Flink. In the next sections we describe the latest snapshot of the E2Data 

deployment environment which relies on the execution of the Apache Flink Framework over an Apache 

Hadoop YARN cluster and the TornadoVM framework, and afterwards we present the current status and 

the technical details of the x86 and Aarch64 testbeds of the project. Next we present the test tool suite 

utilized in the performance evaluation of the Use Cases applications and some well-known benchmarking 

algorithms, such as K-Means as well as the baseline performance results of the Use Cases applications on 

both E2Data testbeds. Moreover, we present and discuss the v2.0 integration performance evaluation 

results comparing the improvements on the K-Means algorithm of the second version of integration. 

The results extracted from this document draw the baseline performance of the Use Cases application on 

the x86 and Aarch64 based testbeds of the project showcasing the achieved performance by scaling out 

and scaling up the deployment environment. Furthermore, the results for the second version of 

integration highlight the speedup achieved by the current integrated version against the initial one while 

scaling up the input data sizes. 
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Introduction 
This deliverable describes the work conducted so far by the E2Data Consortium in WP6, by reporting the 

results of Tasks 6.2 and 6.3. Emphasis is given on the work conducted since the release of deliverable D6.2 

[1] Therefore, D6.3 extends D6.2 in documenting the progress in the integration of E2Data components 

and the Use Case (UC) applications implementation. Also, it documents the current status of the two 

testbeds of the E2Data project and presents the performance evaluation methodology and results. 

The goal of WP6 is to support the integration, installation and configuration of the E2Data software 

components stack. WP6 includes the Installation and the configuration of the integrated E2Data 

environment for demonstration purposes of the implemented system prototypes, currently producing an 

intermediate prototype version. The testbed for Aarch64 architecture, named KMAX, is deployed and 

supported by KALEAO while the x86 architecture testbed by the ICCS partner. also providing power 

consumption measurement capabilities. 

WP6 provides power/performance evaluation of the integrated E2Datra system also including all UCs 

applications. To evaluate the efficiency and performance of the system, extended with the partner UCs 

the consortium utilizes and extends a test suite framework able to ensure software and performance 

portability on the heterogeneous deployment environment of E2Data. Moreover, the test framework 

provides to the utilized well-known benchmarking algorithms, such as K-Means, and the partners UCs 

reproducibility for the proper performance improvement evaluation.  We also provide baselines, which 

will show the benefits of the E2Data solution achieving the requirements of the project. In this deliverable 

we focus on performance evaluation results for the second integration version of the E2Data accelerated 

stack utilizing the K-Means benchmarking algorithm on x86 architectures a well as results setting the 

baselines for the UCs applications on both x86 and Aarch64 testbeds. 

The rest of this document is organized in the following manner: Section 1 presents the intermediate 

prototype version of the E2Data software stack. The top level of the intermediate version of E2Data stack 

contains the implementation of the (UC) applications using the Big Data processing framework of the 

project, i.e. Apache Flink [2] On the heterogeneous execution of Big Data processing we have the 

intermediate version of integration of the Apache Flink framework with the TornadoVM framework 

realizing the execution on hardware accelerators. Section 2 describes in brief the software components 

realizing the E2Data deployment environment and afterwards presents the technical details of the x86 

and Aarch64 based testbeds of the project. Section 3 presents the test tool suite implemented in the 

context of the E2Data project. The test suite ensures software and performance portability on the 

heterogeneous execution nodes of E2Data. The utilized test framework provides to the utilized well-

known benchmarking algorithms, such as K-Means and the UCs implementations reproducibility for the 

E2Data stack performance improvement evaluation. Moreover, we describe the methodology followed 

on the execution of the performance evaluation, the datasets, and the UCs Apache Flink implementations 

under evaluation. Finally, in Section 4 we draw the conclusions of the work done so far and discuss the 

performance evaluation results. 

  

http://www.e2data.eu/


 

  

  

 Page 9 of 54 

 

www.e2data.eu  

D6.3 Prototype v2 & Intermediate 

Evaluation 

 

1. E2Data Prototype (v2) 
This section presents the intermediate prototype version of the E2Data software stack. The top level of 

the intermediate version of E2Data stack contains the implementation of the UC applications using the 

Big Data processing framework of the project, i.e. Apache Flink [2] On the heterogeneous execution of Big 

Data processing we have the intermediate version of integration of the Apache Flink framework with the 

TornadoVM framework realizing the execution on hardware accelerators. 

In the following parts, we present the intermediate version of the E2Data integrated software 

components, followed by the current status of the UCs applications implementation based on Apache 

Flink. 

1.1. E2Data (v2) Integration 
In this section we describe the integration v2.0 of Apache Flink and TornadoVM. We detail the differences 

and improvements compared to v1.0 of the integration as well as provide a comparative evaluation 

between the two versions. In a nutshell, v2.0 improves upon v1.0 in terms of programmability since v2.0 

provides transparent hardware acceleration without exposing any additional APIs to Apache Flink (like 

v1.0). 

Apache Flink is a framework for distributed real time data processing of applications typically written in 

Java/Scala. A Flink application consists of two major units - a JobManager and multiple TaskManagers. 

The JobManager handles the coordination among TaskManagers. It assigns operations to them and 

distributes the data according to the parallelism. On the other hand, TaskManagers are the processes on 

which actual computations happen such as map, reduce, joins etc.  

Despite TornadoVM and Apache Flink are both written in Java, there are some main incompatibilities with 

regard to their granularity of execution and their APIs. 

Apache Flink, being predominantly a streaming engine, orchestrates the execution in a fine-grained 

manner. In particular, various operators (e.g., map, reduce, etc.) can be distributed as separate tasks or 

chained tasks to the Task Manager(s). Subsequently, the Task Manager(s) will perform a computation 

described by the operator on the input dataset at the granularity of the dataset’s element. This execution 

model is also reflected in the Flink API. For example, Listing 1 presents a simple map function in Flink, in 

which each element of the input dataset (in) is multiplied by 2. 

public  Integer  map ( Integer  in ) {  

 return  in * 2;  

 }  

LISTING 1. EXAMPLE OF A MAP FUNCTION IN FLINK API. 

On the other hand, TornadoVM operates in a coarse-grained manner, as it is designed to offload parts of 

Java applications on parallel OpenCL-compatible co-processors (e.g. GPUs, FPGAs), which are utilised 

better when operating in large data sizes. Therefore, the TornadoVM API has been designed to comply 

with the OpenCL programming model that orchestrates the execution from the host to the available 

heterogeneous co-processors in the system. For instance, Listing 2 presents the same map computation 

http://www.e2data.eu/
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that described above using the TornadoVM @Parallel annotation. This annotation is used as a hint to the 

TornadoVM JIT compiler that the loop can be accelerated by parallel execution. 

public  void  map ( int [] in , int [] out ) {  

 for  (@Parallel int  i = 0; i < in .length; i++) {  

  out [i] = in [i]* 2;  

 }  

}  

LISTING 2. EXAMPLE OF A MAP FUNCTION IN TORNADOVM. 

As shown in Listing 1 and Listing 2, one more difference between Flink and TornadoVM is with regard to 

the types of the input and output datasets. Apache Flink operates on object types (e.g., Integers, Doubles, 

Plain Java Objects, Tuples), while TornadoVM operates on primitive types (e.g., int, double, float). 

Integration: Version 1.0. To address the aforementioned incompatibilities between Flink and TornadoVM, 

in the first version of the Flink-TornadoVM integration we intervened in two Flink components; the Client 

and the Task Manager. 

In the Flink Client component, we provided a set of classes (e.g., TornadoMapFunction) that developers 

had to extend to achieve compatibility with TornadoVM. 

For example, to execute the map computation via TornadoVM while using the Flink API (Listing 1), the 

provisioned TornadoMapFunction class would be required first to be extended, as presented in Listing 3. 

public  abstract  class  TornadoMapFunctionBase  implements  TornadoMapFunction  

{  

 

    public  abstract  void  compute( int [] in, int [] out) ;  

 

    @Override  

    public  void  tmap( int [] in, int [] out)  {      

       compute(in, out);  

    }  

 

}  

LISTING 3. TORNADOVM-APACHE FLINK V1.0 INTEGRATION API. 

Then, the compute method in the TornadoMapFunctionBase class would need to be extended with the 

required computation based on the TornadoVM annotations, as presented in Listing 4. As shown in Listing 

4, the compute method uses primitive arrays and employs the @Parallel annotation, fully adhering to 

TornadoVM’s programming model. 

public  static  final  class  Multiplication  extends  TornadoMapFunctionBase  {  

 @Override  

 Public void  compute ( int [] in , int [] out) {  

http://www.e2data.eu/
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  for  ( @Parallel  int  i = 0; i < in .length; i++) {  

       out[i] = in [i]* 2;  

  }  

     }  

}  

LISTING 4. EXAMPLE OF MATRIX MULTIPLICATION IN TORNADOVM-APACHE FLINK V1.0 INTEGRATION. 

In the Task Manager component, we skipped any Flink processing occurring upon the task’s arrival, and 

instead we stored the information contained in the task. In case of DataSource tasks, we first analyzed 

the input data which is stored in a Java Collection, and then copied it in primitive arrays. For example, if 

the input data was grouped in a collection of Tuple2<Integer, Double>, we would first create two primitive 

arrays of types int and double and then populate them with the values of the Tuple2 fields. A secondary 

case is the deployment of transformation tasks (e.g. Map, Reduce). In this case, we would store the user 

function in specific buffers, instead of performing the computation described in the task to each element 

of the input dataset. Another case of deployment is the DataSink task, which is the task that is used to 

collect the computation results and send them back to the Client. In this case, we would utilize all the 

information we stored before, in order to perform the computation using TornadoVM. 

As presented in Listing 5, we created a TornadoVM TaskSchedule, to which we pass the primitive array 

input data (in) and the functions (tmap) that were stored when the computational tasks were deployed. 

After the computation is completed, the primitive results (out) of the computation is converted to the 

expected return type of Flink and is sent back to the cluster. 

public  class Task {  

...  

new TaskSchedule( "s0" )  .task ( "t0" , Multiplication::tmap, in , out )  

 .streamOut ( out )  

 .execute () ;  

...  

}  

LISTING 5. EXAMPLE OF INVOKING TORNADOVM VIA FLINK IN INTEGRATION V1.0. 

Integration: Version 2.0. The two main innovations that are introduced in the second iteration of the 

integration are: (i) the detachment to any new APIs and (ii) the support of Plain Java Object types, such as 

Tuples.  To achieve that, changes were implemented in both Flink and TornadoVM. Specifically, on the 

Flink side, we addressed both incompatibilities with TornadoVM regarding the execution granularity and 

their APIs, while on the TornadoVM side, we provided support for Plain Old Java Object (POJO) types. 

The changes that we performed in Apache Flink were all focused on the Task Manager component. To 

avoid the enforcement of using TornadoVM API to Flink developers, we implemented skeleton classes for 

map and reduce operators. Hence, we utilize the ASM framework1 to perform “bytecode manipulation” 

 
1 https://asm.ow2.io 
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and patch the function call of the Flink User Defined Function (UDF) into one of the classes provided at 

runtime. 

Listing 6 presents the TornadoMap skeleton class which is used for map transformations. This class 

includes the equivalent functions that would be called using the TornadoVM API, as presented in Listing 

1. 

public  class  TornadoMap {  

 public  MiddleMap mdm; 

 public  TornadoMap( MiddleMap mdm) {  

     this .mdm = mdm; 

 }  

 

 public  void  map ( int [] in , int [] out ) {  

         for  (@Parallel int  i = 0; i < in .length; i++) {  

            out [i] = mdm.mymapintint( in [i]);  

         }  

 }  

                    ...  

}  

LISTING 6. SKELETON CLASS FOR MAP OPERATORS. 

The MiddleMap class is an intermediate abstract class that contains signatures similar to the signatures 

of the Flink API, but with the corresponding primitive inputs and the results returned to Object types. In 

case of Flink functions that use input or output with the Tuple Object type, this type is maintained in the 

skeleton functions, as it is handled internally by the TornadoVM Just In Time (JIT) compiler. 

public  abstract  MiddleMap {  

     public  abstract  int  myMapIntInt ( int  i) ;  

 

     public  abstract  int  myMapIntDouble ( double  d) ;  

 

         ...  

 

     public  abstract  Tuple2 myMapTuple2Tuple2(Tuple2 t) ;  

         ...  

}  

LISTING 7. EXAMPLE METHOD SIGNATURES FOR MAP SKELETON CLASS. 

Finally, the MapASMSkeleton class, extends the MiddleMap class and is used to perform the bytecode 

manipulation via the ASM framework. 

public  class  MapASMSkeleton extends  MiddleMap {  

http://www.e2data.eu/
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 public  int  myMapIntInt ( int  i)  {  

         return  0;  

 }     

 public  int  myMapIntDouble ( double  d)  {  

         return  0;  

 }  

 

     ...  

 public  Tuple2 myMapTuple2Tuple2(Tuple2 t)  {  

         return  null ;  

 }  

     ...  

}  

LISTING 8. EXAMPLE METHOD SIGNATURES FOR ASM MAP SKELETON CLASS. 

We have two classes that extend the MapASMSkeleton class to implement the bytecode manipulation 

from Flink to TornadoVM. The first class called ExamineUDF, examines the Flink user function and analyzes 

the input and output types. Then, based on the data types, the second class TransformUDF patches the 

bytecode of the skeleton function with the bytecode of the Flink UDF function. 

Essentially, if we were to pass the map function presented in the previous section to the ExamineUDF and 

TransformUDF functions, the bytecode of the myMapIntInt function in the MapASMSkeleton class would 

be the equivalent bytecode to the method shown in Listing 9. 

public  int  myMapIntInt ( int  i)  {  

 return  map(i);  

}  

LISTING 9. EXAMPLE MAP METHOD 

After the transformation, ASM returns the altered MapASMSkeleton class in bytes. The class is then 

loaded and assigned to a MiddleMap variable. Finally, this variable is passed to the constructor of the 

TornadoMap. 

// Examine the user function to extract i nformation about the types  

ExamineUDF.FlinkClassVisitor flinkVisit = new 

ExamineUDF.FlinkClassVisitor();  

ClassReader flinkClassReader = new 

ClassReader (TransformUDF.mapUserClassName);    

  flinkClassReader.accept(flinkVisit, 0);  

// store this information so that it can be accessed by the TransformUDF 

class  

setTypeVariablesMap();  

http://www.e2data.eu/
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// patch udf into the appropriate MapASMSkeleton  

ClassReader readerMap = new 

ClassReader ( "org.apache.flink.runtim e.asm.map.MapASMSkeleton" );  

ClassWriter writerMap = new ClassWriter (readerMap, 

ClassWriter.COMPUTE_MAXS); 

writerMap.visitField(Opcodes.ACC_PUBLIC, "udf" , desc, null , 

null ).visitEnd();  

         

TransformUDF.MapClassAdapter adapterMap = new 

TransformUDF.MapClassAdapter(writerMap);  

readerMap.accept(adapterMap, ClassReader.EXPAND_FRAMES);  

 

// Load class generated         

byte[] b = writerMap.toByteArray();  

AsmClassLoader loader = new AsmClassLoader();  

Class<?> clazzMap = 

loader.defineClass( "org.apache.flink.run time.asm.map.MapASMSkeleton" , b);  

 

MiddleMap md = (MiddleMap) clazzMap. new Instance ();  

TornadoMap msk = new TornadoMap(md);  

LISTING 10. CODE EXAMPLE FOR ADAPTING A FLINK OPERATOR TO TORNADOVM DYNAMICALLY VIA ASM. 

In order to change the granularity of the execution, we follow the same model as in the previous version 

of the integration; at first, we collect all the data stored in the deployed tasks, until a DataSink task is sent 

to the Task Manager. At this moment, the TornadoVM execution starts. The only difference with the first 

version of the integration lies in the way that we handle the input data when a DataSource task is received. 

In this case, we access the data in their byte form, right before the execution of the deserialization phase 

in the Task Manager. As the serialized byte streams contain a number of extra header bytes and 

considering that the endianness in Flink is different from that in TornadoVM, we create a new byte buffer 

which stores the data streams from Flink in the TornadoVM endianness. Finally, similarly to the first 

version, upon the deployment of the DataSink task, we use all the information stored in the Task Manager 

to perform the computation via TornadoVM. Listing 11 presents an outline of the process described 

above. 

public  class Task {  

...  

new TaskSchedule( "s0" )  

 .task ( "t0" , Multiplication::tmap, in , out )  

     .flinkData(inBytes, numOfResultBytes)  

 .streamOut ( out )  

 .execute () ;  

http://www.e2data.eu/
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...  

}  

LISTING 11. EXAMPLE OF INVOKING TORNADOVM VIA FLINK IN INTEGRATION V2.0. 

The only difference between the code presented in Listing 11 and the one in Listing 7, is that the 

TaskSchedule has a flinkData function, which is used to pass the input bytes and the size of bytes that is 

anticipated to return as a result. This information is utilized by internal TornadoVM array wrappers to 

write and read the bytes of data to and from the heterogenous device, respectively. 

After the execution of the computation on the heterogeneous device, the endianness of the array that 

stores the results is changed to follow the Flink endianness and the data is returned back to the 

serialization buffers of Flink, which distributes them to the cluster. 

Regarding the object handling in TornadoVM we extended the TornadoVM JIT compiler with new 

compilation phases that replace the data access to POJO objects with the access to the corresponding 

primitive arrays that store the data. 

For example, assuming that the input object type is Tuple2<Integer, Tuple2<Double,Double>> the 

execution is as follows. At first, we create, in Flink, a new array of byte primitive type which contains the 

raw bytes of each field of the input objects. In this example, each element in the input object occupies up 

to 20 bytes in the corresponding byte array, including 4 bytes for the Integer object and 8 bytes for each 

of the Double fields in the nested Tuple2 object. Thus, the total size of the byte array would be 

20*numberOfTuples. 

 
FIGURE 1. EXAMPLE INPUT/OUTPUT INDEX ARRAY. 

Then, we introduced new compilation phases to replace the access to the fields with an access to the raw 

data of the field. The new phases apply modifications as node attachments/detachments in the compiler’s 

intermediate representation (IR) graph. For that reason, we created a compiler phase that identifies the 

LoadFieldNodes nodes, which are used for loading the Tuple field from the array. These nodes are then 

replaced by new LoadIndexedNodes; a new node is added for every Tuple field that we need to load as a 

primitive type.  Then, we remove all unnecessary nodes, such as LoadFieldNodes, FixedGuardNodes, 

Box/Unbox nodes. A similar process is followed when the return type of the function is a Tuple. In this 

case, we replace the single StoreIndexedNode node of type Object, with several StoreIndexedNodes, each 

for every field in the returned Tuple. 

If all fields in the Tuple objects have the same type, then in order to access each field it is sufficient to set 

the index of LoadIndexedNode or StoreIndexedNode according to the following formula: i*totalFields + 

numberOfField. For example, if the input Tuple was a Tuple3<Integer, Integer, Integer>, then: 

http://www.e2data.eu/
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-> the index for the LoadIndexedNode which replaced LoadField 0 would be: i*3 

-> the index for the LoadIndexedNode which replaced LoadField 1 would be: i*3 + 1 

-> the index for the LoadIndexedNode which replaced LoadField 2 would be: i*3 + 2 

 

In this case, the compiler will replace LoadFieldNodes with ReadNodes, which will be adjusted with the 

appropriate offsets. 

However, if the types of the fields in a Tuple are different, this indexing is not sufficient to correctly read 

the data of each field. The reason is that the offsets for each ReadNode are calculated by the compiler 

based on the assumption that the array is homogeneous. Therefore, if we had as input/output data the 

array in Figure 1, the Read/Write node for field 0 (Integer) would read the first four bytes (positions 0-3) 

and subsequently the Read/Write node for field 1 (Double) would assume that in the previous position of 

the array was another double value. Therefore, the second node would read/write bytes 8-15 and for field 

2 the same assumption would be made, so the bytes that would be read/write would be bytes 16-23. 

Thus, we created a new compiler phase to calculate the correct offsets. The offsets of the Read/Write 

nodes are calculated as follows: 

Tuple2: 

 Read offset for F0: oclAddress + i*sizeOf(F1) 

 Read offset for F1: oclAddress + (sizeOf(F0) + i*sizeOf(F1) 

Tuple3: 

 Read offset for F0: oclAddress + (sizeOf(F1) + sizeOf(F2)*i) 

 Read offset for F1: oclAddress + (sizeOf(F0) + (sizeOf(F0) + sizeOf(F2))*i) 

Read offset for F2: oclAddress + (sizeOf(fieldO) + sizeOf(field1) +   (sizeOf(field0) + sizeOf(field1)*i) 

Tuple4: 

 Read offset for F0: oclAddress + (sizeOf(field1) + sizeOf(field2) + 

        sizeOf(field3))*i 

 Read offset for F1: oclAddress + (sizeOf(field0) + (sizeOf(field0) + 

        sizeOf(field2) + field3)*i) 

Read offset for F2: oclAddress + (sizeOf(fieldO) + sizeOf(field1) + (sizeOf(field3) + sizeOf(field0) + 

sizeOf(field1)*i) 

Read offset for F3: oclAddress + (sizeOf(fieldO) + sizeOf(field1) + sizeOf(field2) + (sizeOf(fieldO) + 

sizeOf(field1) + sizeOf(field2))*i) 

 

Finally, we created one more compiler phase to support a secondary interface of map functions named 

RichMapFunctions. The distinction between the map functions that implement the RichMapFunction 

interface and the ones that implement the MapFunction interface is that the former have an extra input 

dataset, which is broadcasted to other parallel instances of a Flink operation. Our compiler phase supports 

RichMapFunctions functions, by eliminating nodes related to collections (e.g. MethodCallTarget Nodes, 

Invoke Node, etc.) and changing the limit of the Loop PhiNode from Invoke#Collection.size to a constant 

node that contains the size of the dataset. 

http://www.e2data.eu/
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1.2. E2Data (v2) Use Case Applications 
Health Analytics: EXUS has already developed a hospital readmission risk prediction algorithm, in order 

to reduce the number of patients that are readmitted in a hospital within 30 days after their initial release. 

In order to improve the predictive capability of the hospital readmission risk prediction algorithm in the 

E2Data project, a dataset that represents 10 years (1999-2008) of clinical care at 130 US hospitals will be 

used. This dataset includes over 50 features for each patient such as race, gender, age, admission type, 

spending time in hospital, medication, etc. 

Furthermore, a data preprocessing step has been performed in order to handle missing values, inaccurate 
and inconsistent values, duplicates, etc. Also, a feature selection step using regression models in order to 
extract the most important information from the dataset. 

After preprocessing, a supervised machine learning model should be selected. The selection of the 
algorithm has two key features that should been taking into consideration: 

1. Which model fits better in the distribution of given data? 
2. Which model can be parallelized in order to cover the E2DATA requirements? 

Regarding those requirements the algorithm that has been used is the Logistic Regression using batch 
Gradient Descent for parameters optimization. This algorithm gets 2 arrays as input: 

● X: A 2D array with size the number of patient and the number of patient’s features 
● y: A 1D array which are the real values of readmission type (1 for readmitted patient and 0 for not 

readmitted patient) 

The output is an 1D array with size the number of patient’s features which are actually the trained 
parameters. 

The logistic regression algorithm is as follows: 

ὒέὫὭίὸὭὧὙὩὫὶὩίίὭέὲὢȟώȡ 

 ὍὲὭὸὭὥὰὭᾀὩ ὖὥὶὥάὩὸὩὶί  ύ 

 ὖὶὩὨὭὧὸ ὸὬὩ ὴὶέὦὥὦὭὰὭὸώ έὪ ὶὩὥὨάὭίίὭέὲ όίὭὲὫ ὸὬὩ άὥὸὶὭὼ ὢ ὥὲὨ  ύ  ώ  

 ὅὥὰὧόὰὥὸὩ ὸὬὩ Ὡὶὶέὶ ὦώ ὧέίὸ ὪόὲὧὸὭέὲ όίὭὲὫ ώ ὥὲὨ ώ   ὐ 

 ὕὴὸὭάὭᾀὩ ὸὬὩ ύ όίὭὲὫ ὸὬὩ ὫὶὥὨὭὩὲὸ ὨὩίὧὩὲὸ ὥὰὫέὶὭὸὬά έὲ ὐ  ὲὩύ ύ 

In the context of E2Data, we exploit the underlying Apache Flink and Tornado APIs. The Apache Flink will 
be used for data partitioning and parallelization of the steps of the algorithm using the MapReduce 
approach. Tornado VM will be used in order to parallelize the functionalities of the algorithm such as 
making parallel matrix operations. 

Natural Language Processing: The main NLP applications to evaluate and exhibit E2Data’s impact are key 

towards the actual exploitation and adoption of E2Data results. These are: 

● Sentiment and Cause analysis on tourism industry data (reviews, twitter messages, web articles, 

etc.). We name it “Sentitour” and it is an application under development. The idea here is to be able 

to process travel reviews and opinions in real time. The processing of such information will be used 

to extrapolate useful knowledge and alerts about interesting opinions, their polarity and the reason 

http://www.e2data.eu/
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that is causing the positive or negative statement, as classified within several categories (i.e. cost, 

cleanliness, etc.). 

A key success factor of the application is to be able to respond into large amounts of data, as quickly 

as possible. The ability to process at least 250 messages per second and 2TB of yearly data will signal 

the system’s adequacy to become competitive enough and reliable (able to support Intime alerting) 

The datasets used in the evaluation include: 

o Review texts for hotels, destinations, and tourism services in general 

o Twitter messages commenting tourism services 

o Articles 

● Address Cleaning & Identification - Address resolution, for mail delivery services, is the second 

application that will demonstrate the gains of acceleration. The objective is to analyze the input 

address and find its point in a GIS system. The application has a special need for performance because 

it is used in different phases of an automatic system with specific performance requirements. The rate 

must be sustained above 20 addresses/sec in order to support the required quality of service. The 

current application uses a strict (small) set of rules in order to keep high rates. In the new updated 

TornadoVM version, we expect to expand the functionality to a richer set of resolution rules and use 

machine learning algorithms utilizing the historic data of the mail delivery organization. 

Green Buildings: A large IoT infrastructure is installed in educational buildings in Greece, Italy and Sweden, 
currently totaling 1.239 sensing endpoints and growing, expected to reach over 1.300 points by the end 
of the project. This infrastructure provides energy consumption-related data for each school, as well as 
outdoor and indoor environmental data for a number of classrooms in each building. In its current setup, 
this deployment produces daily over 400 MB of data, resulting in a yearly data volume of over 140 GB. 

In this context, sensors comprising the E2Data IoT infrastructure generate, handle, transfer and store a 
huge amount of data, which is difficult to be processed in an efficient manner using current platforms and 
techniques. More specifically, big data analysis algorithms and techniques such as clustering, regression, 
classification and pattern recognition will be deployed in E2Data in order to enable superior 
computational efficiency, in order to enable processing pipelines that will allow real-time monitoring of a 
certain building’s energy behavior. 

To meet the requirements of the current version of the E2Data framework integration we have provided 

an Apache Flink implementation utilizing the DataSet API of the framework for the Analytics Engine of the 

Green Buildings UC. The source code is available under the project’s Git repository in: 

https://github.com/E2Data/gb-analytics-flink. 

  

http://www.e2data.eu/
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2. E2Data Deployment 
In this section, we firstly describe in brief the software components realizing the E2Data deployment 

environment and afterwards we provide technical details of the x86 and Aarch64 based testbeds utilized 

by the E2Data software stack. 

2.1 Deployment Environment 
The deployment of the E2Data software stack relies on the deployment of the Apache Flink Framework 

over an Apache Hadoop YARN cluster [3] and the TornadoVM framework. Apache Hadoop YARN is a 

cluster resource management framework. It allows to run various distributed applications on top of a 

cluster.  Flink runs on YARN next to other applications. Users do not have to setup or install anything if 

there is already a YARN setup. A prerequisite of a Hadoop YARN deployment is the installation and 

configuration of Hadoop DFS for the needs of the Hadoop YARN cluster operations. Hence, a proper HDFS 

(Hadoop Distributed File System) or another distributed file system supported by Hadoop is installed on 

the cluster. 

In a nutshell, regarding the operation of Flink over a YARN cluster, the YARN client needs to access the 

Hadoop configuration to connect to the YARN Resource Manager (RM) and HDFS. When starting a new 

Flink YARN session, the client first checks if the requested resources, memory and virtual cores for the 

ApplicationMaster (AM) are available. After that, it uploads a JAR file that contains Flink and the 

configuration to HDFS. The next step for the client is to request a YARN container to start the AM. Since 

the client registered the configuration and JAR-file as a resource for the container, the NodeManager of 

YARN running on that particular machine will take care of preparing the container (e.g. downloading the 

files). Once this is finished, the (AM) starts. 

The JobManager and AM are running in the same container. Once they successfully start, the AM knows 

the address of the JobManager (its own host) and a new Flink configuration file is generated for the 

TaskManagers (so that they can connect to the JobManager). The file is also uploaded to HDFS. 

Additionally, the AM container also serves the Flink’s web interface. All ports that the YARN code is 

allocating are ephemeral ports. This allows users to execute multiple Flink YARN sessions in parallel. 

After that, the AM starts allocating the containers for Flink’s TaskManagers, which will download the JAR 

file and the modified configuration from the HDFS. Once these steps are completed, Flink is set up and 

ready to accept Jobs. 

To orchestrate and execute benchmarks on the E2Data heterogeneous systems with hardware dependent 

parameters that have to be tuned and spawn a diverse set of configuration files we utilize the Peel 

Experiment Execution Framework [4] Peel, a framework to define, execute, analyze, and share 

experiments, enables the transparent specification of benchmarking workloads and system configuration 

parameters. It orchestrates the systems involved and automatically runs and collects all associated logs 

of experiments. Peel currently supports Apache HDFS, Hadoop, and Flink and can easily be extended to 

include further systems. 

Apart from the current integrated version of Apache Flink with TornadoVM already discussed in Section 

1.1, for the baseline results presented afterwards in this document we use plain Apache Flink over Apache 

YARN and Oracle’s JVM. The exact versions of those software components are summarized in Table 1. 

http://www.e2data.eu/
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TABLE 1. E2DATA BASELINE DEPLOYMENT SOFTWARE COMPONENTS. 

Name Version Description 

Apache Flink 1.9.1 Big Data Framework 

Hadoop Yarn 3.1.1 Cluster Resource Management 

Framework 

hǊŀŎƭŜΩǎ W±a 1.8 Execution Engine 

Peel 1.1 Peel Experiment Execution 

Framework 

2.2 Testbeds 
In this section we describe the current status and the specification details of the two testbeds of E2Data, 

i.e. the Aarch64 based provided by the KALEAO partner and the x86 based provided by the ICCS partner. 

2.2.1 KMAX Aarch64 Testbed 
The KALEAO (KMAX) testbed consists of multi-core ARM Processors. Four Identical Blade systems have 

been made available for the testbed. Each of the blades consists of 64 Big Cores and 64 Little cores. The 

details of the KALEAO (KMAX) are described in Table 2. 

TABLE 2. KALEAO (KMAX) AARCH64 TESTBED SPECIFICATIONS. 

Machine 

Type 

ID Number of 

Processors 

Big Cores Little Cores RAM (GB) 

Blade 3 16 4x CortexA-57 

@2.1Ghz 

4x CortexA-53 

@1.5Ghz 

4 

Blade 4 16 4x CortexA-

57@2.1Ghz 

4x CortexA-53 

@1.5Ghz 

4 

Blade 5 16 4x CortexA-57 

@2.2Ghz 

4x CortexA-53 

@1.5Ghz 

4 

Blade 6 16 4x CortexA-57 

@2.1Ghz 

4x CortexA-53 

@1.5Ghz 

4 

To add heterogeneity to the cluster additional hardware is also available, that consists of FPGAs and GPUs. 

The details of these Hardware Components are shown below in Table 3 and Table 4. 

 

 

http://www.e2data.eu/
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TABLE 3. FPGA BOARD SPECIFICATIONS. 

Machine Type ID FPGA Type 

FPGA Hardware 1 Xilinx “Ultrascale+” Quad-core 4GB DDR4 to PS 512MB DDR4 

 

TABLE 4. MALI GPU BOARD SPECIFICATIONS. 

Machine 

Type 

ID Arm Mali GPU Number of 

Processors 

Big Cores Little Cores RAM 

(GB) 

Rock 960 7 Mali T860MP4 6 2x CortexA-72 4x CortexA-53 4 

Hikey 960 8 Mali G71 MP8 8 4x CortexA-73 4x CortexA-53 3 

Hikey 960 9 Mali G71 MP8 8 4x CortexA-73 4x CortexA-53 3 

Hikey 960 10 Mali G71 MP8 8 4x CortexA-73 4x CortexA-53 3 

Hikey 960 11 Mali G71 MP8 8 4x CortexA-73 4x CortexA-53 3 

Hikey 960 12 Mali G71 MP8 8 4x CortexA-73 4x CortexA-53 3 

The above set of hardware components form the KALEAO (KMAX) testbed cluster. 

2.2.2 ICCS x86 Testbed 
The ICCS testbed consists of multi-core physical machines, some of which have also attached a set of 

hardware accelerators. For the time being, only GPU accelerators have been installed. The detailed 

specifications are presented in Table 5. 

TABLE 5. ICCS X86 CLUSTER SPECIFICATIONS. 

Host Process
or Model 

Sockets Cores 
per 
socket 

Threads 
per core 

NUMA 
nodes 

RAM 
(GB) 

HW 
Accelerator
s 

silver1 Intel(R) 
Xeon(R) 
Silver 
4114 
CPU @ 
2.20GHz 

2 10 2 2 256 2 x Tesla 
V100-
SXM2-
32GB, 
1 x 
GeForce 
GTX 1060 

http://www.e2data.eu/
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6GB 

gold1 Intel(R) 
Xeon(R) 
Gold 
5120 
CPU @ 
2.20GHz 

2 14 2 2 256 1 x 
GeForce 
GTX 1060 
6GB, 
1 x Radeon 
RX 580 
4GB 

gold3 Intel(R) 
Xeon(R) 
Gold 
5218T 
CPU @ 
2.10GHz 

2 16 2 2 314 - 

cognito Intel(R) 
Core(TM
) i7-
4820K 
@ 
3.70GHz 

1 4 2 1 64 1 x 
GeForce 
GTX 1060 
6GB 

quest Intel(R) 
Core(TM
) i7-8700 
@ 
3.20GHz 

1 6 2 1 32 1 x 
GeForce 
GTX 1060 
6GB, 
1 x UHD 
Graphics 
630, 
1 x Radeon 
RX 580 
4GB 

termi7 Intel(R) 
Xeon(R) 
CPU 
E5645 
@ 
2.40GHz 

2 6 2 2 96 - 

termi8 Intel(R) 
Xeon(R) 
CPU 
E5645 
@ 
2.40GHz 

2 6 2 2 96 - 

termi9 Intel(R) 
Xeon(R) 
CPU 
E5645 
@ 
2.40GHz 

2 6 2 2 96 - 

termi10 Intel(R) 
Xeon(R) 

2 6 2 2 96 - 
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CPU 
E5645 
@ 
2.40GHz 

termi11 Intel(R) 
Xeon(R) 
CPU E5-
2650 0 
@ 
2.00GHz 

2 8 2 2 64 - 

termi12 Intel(R) 
Xeon(R) 
CPU E5-
2650 0 
@ 
2.00GHz 

2 8 2 2 64 - 

Regarding power consumption monitoring capabilities on the ICCS x86 cluster the ICCS infrastructure 

provides a Power Distribution Unit (PDU) for the E2Data project. The provided hardware is an APC 

metered-by-outlet Rack PDU. The exact model is AP8481. 

The PDU is reachable through the network, at a public IP address. The PDU features a total of 24 outlets. 

All physical nodes that have been dedicated to the E2Data project are plugged to these outlets. In 

addition, three pairs of physical nodes among the ones provided share their PSUs with one another. 

The PDU supports three distinct methods for monitoring power statistics of its outlets: it serves a web UI, 

a Telnet/SSH console, and it also acts as an SNMPv3 agent. ICCS makes all these access methods available 

to the E2Data partners for the duration of the project. 

To enable power consumption metering capabilities on the testing framework we have developed a 

system extension for the Peel Framework utilizing the PDU telnet API capable to compute the average 

power consumption during the execution of an experiment of the nodes participating in this experiment 

run. 

In Figure 2 and Figure 3 we present power consumption results from the x86 ICCS cluster for the Green 

Buildings UC application and the K-Means algorithm respectively. The results refer to the average power 

consumption in Watts measured from the nodes participating in each experiment execution while scaling 

up and scaling out the resources of the cluster. 

http://www.e2data.eu/
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FIGURE 2. POWER CONSUMPTION FOR GREEN BUILDINGS UC ON ICCS X86 CLUSTER. 

 

FIGURE 3. POWER CONSUMPTION FOR K-MEANS ON ICCS X86 CLUSTER. 

As shown in both figures, as the number of worker nodes and task slots scale, the power consumption 
also increases. This trend is anticipated for all UCs and benchamrking algorithms that exhibit similar 
scaling trends.  
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3. Performance Evaluation Results 
As already mentioned, to ensure reproducible results, we use the Peel Experiment Execution Framework 

to execute our experiments. Peel allows us to package all the information related to a suite of experiments 

in a so-called Peel bundle. These bundles are then installed on a test system and executed automatically. 

Peel captures performance information such as experiment runtime and system utilization metrics. In this 

Section we present performance evaluation results for well-known benchmarking algorithms, such as K-

Means and the UCs applications. Finally, we present and discuss the v2.0 integration performance 

evaluation results comparing the end-to-end execution times of the K-Means algorithm of version 2.0 

against version 1.0. 

3.1 E2Data Platform Performance Evaluation 
In the first part of the provided performance results we utilize standard benchmarking algorithms to 

extract results of the version 2 of the E2Data big data framework, i.e. Apache Flink. We evaluate Apache 

Flink version 1.9.1 utilizing the K-Means algorithm Peel Bundle available in 

https://github.com/E2Data/e2data-peel-example over both the x86 and Aarch64 clusters. Below we 

describe the evaluation methodology, the benchmarking algorithm and we present and discuss the 

extracted performance evaluation results. 

3.1.1 Methodology 
We perform a combined scale-out/scale-up experiment utilizing the Peel Framework. We vary the number 

of workers to measure the influence of scaling out the cluster. In addition, we vary the number of task 

slots per worker to measure the influence of scaling up the individual machines. We set the amount of 

memory available for Flink Task Managers to 75% of the physical system memory. This corresponds to the 

default amount of memory reserved by Flink for each Task Manager running inside a YARN container. 

Each worker functions both as a Flink Task Manager and an HDFS Data Node. We use the default HDFS 

replication of 3. Table 6 lists the software versions used for our experiments. 

TABLE 6. PERFORMANCE EVALUATION FRAMEWORK SOFTWARE CONFIGURATION. 

Software Version 

Flink 1.9.1 
Hadoop 3.1.1 

DStat 0.7.3 

 

3.1.2 Benchmarking Algorithms 
We use K-Means as an example of a machine learning algorithm. K-Means is a well-known clustering 

algorithm and is used as a basis for many machine learning tasks. Its input is a collection of points in an n-

dimensional space and a collection of k centroids representing an initial clustering. The algorithm 

iteratively refines the initial clustering by assigning each point to its nearest centroid and updating each 

centroid by computing the mean of the points assigned to it. The algorithm typically runs to convergence 

or for a fixed number of iterations. The output of K-Means are the final centroids and/or an assignment 

of each point to their cluster (both results are equivalent). 

http://www.e2data.eu/
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3.1.3 Datasets 
TABLE 7. K-MEANS BENCHMARKING ALGORITHM CONFIGURATION. 

Description Used in experiment Size (MB) Data points 

Generated dataset K-Means 700 60 million 

For the K-Means experiment, we use an input file of about 700 MB, consisting of 60 million points with 2 

dimensions and 64 initial clusters. We run each experiment three times and report the median of the 

measured end-to-end runtime. 

3.1.4 Results 
We run the K-Means experiment on two clusters, the ICCS cluster and the KMAX cluster. We first detail 

the ICCS experiment, and then the KMAX experiment. 

 

FIGURE 4. K-MEANS RESULTS ON ICCS CLUSTER. 

ICCS. We scale the number of Flink TaskManagers (i.e., workers) from 1 to 8. For each scaling step, we 

measure four task slot configurations, whereby we scale the number of task slots from 1 to 8. The number 

of tasks slots determines how many task instances can run in parallel on each Flink worker. We choose 

the maximum number of task slots based on the number of vCPU cores (aka. hyperthreads) that the 

machines support. 

We observe a speedup when increasing the number of workers, and also when increasing the number of 

task slots. We note that the primary cause of the speedup is the total number of physical CPU cores, 

because 1 worker with 4 slots is equally fast as 4 workers with 1 slot each. However, once we exceed the 

number of physical CPU cores at 8 slots per worker, we observe no further speedup over 4 slots (the 

measurement variance for 8 workers and 8 slots is contained within the variance for 8 workers and 4 slots. 

Therefore 8 slots achieve no measured speedup over 4 slots). 

http://www.e2data.eu/
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The maximum achieved speedup is sublinear, at 4.4x. This can be explained by the high initialization costs 

of Flink. We would thus expect that the speedup increases for larger inputs. 

 

FIGURE 5. K-MEANS RESULTS ON KMAX CLUSTER. 

KMAX. We scale the number of workers from 1 to 16, and the number of task slots from 1 to 4. Note that 

the ARM CPUs do not support hyperthreading, thus each task slot corresponds to a physical CPU core. 

Like in the ICCS experiment, we see that the main reason for the speedup is the number of CPU cores. 

One worker with four slots has the same runtime as four workers with one slot each. Therefore, this 

benchmark is not bottlenecked by disk or network bandwidth. 

On a single node, we observe a near-linear speedup of 3.2x when scaling task slots. 

When scaling to multiple nodes, we notice that the runtime decreases from 1 to 8 to nodes. The maximum 

speedup is 8.1 times. However, from 8 to 16 nodes, we observe no further speedup. This indicates that 

other overheads dominate the runtime, such as the Flink initialization time, and the network 

communication for the inter-worker synchronization that occurs at the end of every K-Means iteration. 

3.2 Use Case Applications Performance Evaluation 
In this part we discuss the implementation requirements of each UC application and the methodology we 

used to achieve uniformity, replicability and reproducibility for each UC performance evaluation. We also 

define the datasets utilized for the performance evaluation of the UCs implementation on Apache Flink 

as well as we present and discuss the performance results extracted from each UC. 

3.2.1 Methodology 
As already described, we are using the Peel testing framework [4] for the performance evaluation. Peel 

operates on a bundle which packages together the configuration data, datasets, and programs required 

for the execution of a particular set of experiments. Hence, each UC implementation provides a Peel 
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Bundle. The structure of a peel Bundle includes the following top-level elements: the workload 

applications, the environment configurations and experiments definitions, the data generators, the static 

datasets, the archived system binaries, the Peel libraries and dependencies, and the utility scripts and files 

(more details can be found in [4] Hence, each UC has created a Peel Bundle including the UC application 

source code, the environment configuration and the experiments UC Peel definitions, the static datasets 

or the data generators, and any potential extensions of the Peel framework capabilities. More details on 

how to build a Peel Bundle can be found in https://github.com/E2Data/peel-howto. 

3.2.2 Health Analytics 
The health analytics UC has been implemented in Java using three different approaches: 

1.    Java vanilla (single-threaded). 

2.    Java using TornadoVM. 

3.    Java using Apache Flink. 

The Java vanilla and Java using TornadoVM have been implemented in the same component and the user 

can choose which approach wants to be executed by passing the appropriate input argument. The Java 

using Apache Flink has been implemented as a different component by using the DataSet API of the Flink 

framework. The repository of these components can be found here: 

https://github.com/E2Data/exus_use_case 

Furthermore, for the Apache Flink version there is another repository which is using the peel framework 

in order to produce the benchmarks results in ICCS and KMAX clusters. The repository for the Peel bundle 

of health UC is here: https://github.com/E2Data/healthUC-peel 

The prerequisites for the health analytics UC are: 

· Java 8 

·  Maven 3.6.0 

· TornadoVM  

· Apache Flink 1.9.1 

· Hadoop 3.2.1 

In both cases (TornadoVM and Apache Flink), the user should pass some arguments to the system in order 

to run the logistic regression algorithm. These arguments are: 

· Number of iterations → k 

· Learning rate → a 

· Regularization parameter → r 

· Number of features → n 

· Which of the 2 dataset (small/big) to use→ d 

http://www.e2data.eu/
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The number of iterations (k) is a crucial hyperparameter because it significantly affects the performance 

of the algorithm in terms of execution time 

The output results for Java, TornadoVM and Apache Flink are identical and contain: 

1. execution times 

2. evaluation metrics results, such as precision, recall, and F1 measurements. 

For Java vanilla and TornadoVM the results are printed in the console log of the application, while in Flink 

the results are saved in a file. 

For this deliverable, the main results that will be described and analyzed are based on execution time of 

the training of logistic regression algorithm. 

In Section 3.2.2.1 we describe the datasets that are used for the health analytics UC and in Section 3.2.2.2 

we present all the benchmark results for each of the implemented approaches. 

3.2.2.1 Datasets 
For this UC we used two different sizes of input datasets. The first one is a small dataset that contains 

around 80K rows and 82 features, while the other one is a larger dataset which contains around 2M rows 

and 82 features. The size of the small dataset is 147MB, while the size of the large dataset is 4.6GB. 

The large dataset is a byproduct of the small dataset in order to better evaluate TornadoVM and Apache 

Flink in terms of execution time with Java vanilla. For the data synthesis the SMOTE algorithm [5] has been 

used in order to increase the size of the dataset in an efficient way and keep as much as possible the same 

distribution with the small dataset. 

3.2.2.2 Results 
Regarding the benchmark results, the execution time of the Java implementation of the logistic regression 

algorithm will be compared with the execution times of those on Apache Flink and TornadoVM. For each 

implementation, the tests have been performed on the ICCS and KMAX clusters. 

Below are the initial results from the small dataset (around 80K rows - 146MB) and large dataset (around 

2M rows - 4.6GB). The Java and TornadoVM results have been performed in the UNIMAN server and the 

Apache Flink results are performed to the ICCS cluster. 

TABLE 8. INITIAL RESULTS OF EXUS USE CASE FOR JAVA, TORNADOVM, APACHE FLINK (USING ONLY ONE JOB MANAGER 

AND 1, 3 AND 10 TASK SLOTS) FOR THE SMALL DATASET. 

Kernel 

/Number 

of 

Iterations 

Flink with 1 

CPU core 

Flink with 3 

CPU cores 

Java Tornado Flink with 10 

CPU cores  

50  15 sec 8 sec 3.43 sec  1.11 sec 4 sec 

100  26 sec 13 sec 7 sec 1.62 sec 7 sec 
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200  49 sec 24 sec 13.92 sec 2.21 sec 10 sec 

400  92 sec 40 sec 27.56 sec 3.46 sec 15 sec 

1000  231 sec 96 sec 70 sec 7 sec 33 sec 

 

TABLE 9. INITIAL RESULTS OF EXUS USE CASE FOR JAVA, TORNADOVM, APACHE FLINK (USING ONLY ONE JOB MANAGER 

AND 10 TASK SLOTS) FOR THE BIG DATASET. 

Kernel 

/Number 

of 

Iterations 

Flink with 1 

CPU core 

Flink with 3 

CPU cores 

Java Tornado Flink with 10 

CPU cores  

1000           -            - 45 min  3-4 minutes 17 minutes 

 

Below are the results of the small dataset with 1000 iterations and the results of the large dataset using 

10 iterations running on Apache Flink. 

 

FIGURE 6. EXECUTION TIME OF 1000 ITERATIONS LOGISTIC REGRESSION FOR THE SMALL DATASET USING 1,2,4,8 TASK 

SLOTS AND 1,2,4,8 WORKERS. 
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FIGURE 7. EXECUTION TIME OF 10 ITERATIONS LOGISTIC REGRESSION FOR THE BIG DATASET USING 1,2,4,8 TASK SLOTS 

AND 1,2,4,8 WORKERS. 

Please note that in the execution time of Java and TornadoVM only the training time of the model is 

accounted. However, in the Flink version, the time to read the dataset from a binary format is also counted 

in the execution time. The impact of this overhead depends on the number of iterations. As Figure 7 

shows, the scale out experiments perform well on the big dataset. Performance increases with the 

number of nodes. Increasing the number of task slots improves performance up to four task slots. On the 

other hand, in the small dataset, scalability is negatively affected. 

3.2.3 Natural Language Processing 
NLP kernels work on dictionaries. A dictionary can be a set of words or phrases in text (UTF16 character) 

or compiled binary format. The compiled format can contain indices for quick recognition of a word as 

well as information related with the word; e.g., morphological information as lemma, stem, Part Of 

Speech (POS), etc., syntactic information as properties of accompanied words on left or right, specialised 

phrases, etc., semantic information as sentiment, synonyms, antonyms, etc. and statistical information as 

frequencies per document and corpus, TFIDF scores, etc. 

The kernels are classified in two classes, 

● the ones that work only on dictionaries without any extra input (clustering kernels) and 

● the ones that implement a function on streamed input using the dictionaries (fuzzy matching 

kernels) 

Kernels are also classified on the type of dictionary they use. We have the Word Distance Kernels (WDK) 

where the lexicon is a list of words (or phrases), the simple Directed Acyclic Word Graphs Kernels (DAWGK) 

where the dictionary is a binary compressed graph data structure storing words and used for fuzzy 

matching and the Compressed Trie Kernels (CTK) where there are indexes from words to any useful 
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information. Compressed Tries (C-Tries) have a graph structure similar to DAWG permitting fuzzy 

matching functionality on words they store. 

The kernels implemented are: 

• WDK - Levenshtein distance used for lexicographic ranking word of the dictionary with an input word. 

The kernel outputs the distances of the dictionary word with the input word. 

• K-Means clustering is using the Euclidean distance between the documents of the dataset. The 

algorithm takes as input a C-Trie representation of the dataset and the parameter K. C-Trie holds the 

index from words to the documents they appear as well as the frequencies. 

• Hierarchical clustering is using Cosine similarity between documents. The input is the same C-Trie that 

is used in K-Means clustering. The ranking now is based on the angles between documents. Each 

document is represented as a vector with dimension of the vocabulary size used in the dataset and 

values the TFIDF scores of the word. 

• BM25 kernel implements a search engine function which takes as input a phrase (sequence of words) 

and returns the most relative documents in the dataset. BM25 is a variation of TFIDF algorithm used 

for indexing and searching document collections. 

The common functionality of all kernels includes the configuration to run the algorithm either on the JVM 

without acceleration, run it using TornadoVM, and run it both in JVM and TornadoVM and compare the 

results, the times and the acceleration rate. 

Our first set of experiments were for the current version of the NLP kernels and aimed to showcase GPU 

speedup with TornadoVM on NLP kernels execution, within the following runs: 

Å Execute lexicographical ranking kernel with two different dictionaries (person names, spelling 

lexicon) 

Å Execute two clustering algorithms (Hierarchical, K-Means) on a corpus of tweets 

There were cases where the Tornado could not produce a correct kernel due to the complex flow of the 

kernel function. In these cases, we modified the kernel code manually and used the prebuilt functionality 

of Tornado in order to run the kernel from Java code. The Java classes that implement the kernel 

algorithms offer the configuration to use either the prebuilt kernel or the Tornado produced kernel code. 

The next two sets of experiments show the performance behavior after the integration of the kernels with 

Flink, on a local cluster setup and on ICCS cluster, for: 

Å lexicographical ranking kernel 

Å K-Means clustering algorithm 
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3.2.3.1 Datasets 
For the initial testing of the kernel algorithms we use open datasets on which we apply the code kernels 

in both Java and Tornado versions. 

For the Word Distance Kernel (Levenshtein) we use public domain lexicons from the Moby Project [6] In 

detail, we tested different types and sizes of lexicons, e.g. 

Å Names.txt: 159,624 Most common names used in the United States and Great Britain 

Å Single.txt: 354,984 Single words excluding proper nouns, acronyms, compound words and 

phrases, but including archaic words and significant variant spellings 

For the test of clustering and search engine functions we used datasets from Kaggle [7] Specifically, we 

used: 

Å The FIFA World Cup 2018 Tweets https://www.kaggle.com/rgupta09/world-cup-2018-tweets 

a random collection of 530K tweets. 

Å Wine reviews derived from WineEnthusiast during the week of June 15th, 2017. The data set 

contain 150K of wine reviews https://www.kaggle.com/zynicide/wine-reviews 

Å Russian Troll Tweets. 3M https://www.kaggle.com/fivethirtyeight/russian-troll-tweets 

The next phase of our evaluation utilizes datasets that are related to the NLP applications that require 

acceleration and include: 

● Hotel and destination reviews: The datasets used demonstrate the functionality of the application 

and specifically the performance characteristics and acceleration gain will be open datasets from 

Kaggle 

○ https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe 

○ https://www.kaggle.com/datafiniti/hotel-reviews 

○ https://www.kaggle.com/rtatman/deceptive-opinion-spam-corpus 

● Location addresses operate on a labeled dataset (500K-1M addresses) and their functionality is 

tested against an equally sized test (unlabeled) dataset (around 500K). 

3.2.3.2 Results 
Results using Tornado on a local GPU setup. The evaluation of the new code kernels took place on the 

following GPU setup: 

Å GPU: GTX 970 

Å Number of GPUs: 13 

http://www.e2data.eu/
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Å Memory: 4 GB 

The performance gains we got running the kernels under TornadoVM with respect to the JVM version are 

summarised in the tables below. 

For the Levenshtein distance (WDK) we used two different sizes of vocabularies and input sizes, as shown 

in Table 10. 

TABLE 10. LEVENSHTEIN DISTANCE (WDK) PARAMETERS. 

Vocabulary size 
(nr of words) 

Input Tornado speedup Content type 

159624 100 4.4362x Vocabulary consists of person names 

159624 200 6.7354x Vocabulary consists of person names 

354984 100 7.5789x Vocabulary consists of English words 
(spelling checker dictionary) 

354984 200 9.8268x Vocabulary consists of English words 
(spelling checker dictionary) 

For Hierarchical classification using the cosine similarity metric (TFIDF), we obtained the following results 

(having q-gram value equal to 0, which means plain words) 

TABLE 11. HIERARCHICAL CLASSIFICATION USING THE COSINE SIMILARITY METRIC (TFIDF) RESULTS. 

Vocabulary size 

(nr of distinct 

words in the 

document) 

Input (number of 

document) 

Average 

Document Length 

(nr of words per 

document) 

Tornado 

speedup 

Content type 

38446 114239 13 28.2931x Documents are 

tweet messages 

about FIFA 2019 

For K-Means clustering, with the two kernels KMeansEvaluateGroups() and KMeansCalculateCentroids(), 

the two kernel functions are running in different tasks in a loop using the same dataset as the previous 
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hierarchical clustering kernel, we got the following results (having q-gram value equal to 0, which means 

plain words) for 32 rounds of the algorithm. 

TABLE 12. NLP K-MEANS CLUSTERING KERNELS RESULTS. 

Vocabulary size 

(nr of distinct 

words in the 

document) 

Input (number of 

document) 

Average 

Document Length 

(nr of words per 

document) 

Tornado 

speedup 

Content type 

38446 114239 13 9.7761x Documents are 

tweet messages 

about FIFA 2019 

Results from integrated Flink version on local cluster. For the Levenshtein distance (WDK) the cluster 

setup and the results are described below. 

Å 1 CentOS 8, 1 JobManager, 2 TaskManagers, VM, 16GB RAM 

Å 1 CentOS 7, 4 TaskManagers, 32G RAM 

Å 1 Red Hat 7, 4 TaskManagers, 32G RAM 

TABLE 13. LEVENSHTEIN DICTIONARY SIZE V=159624 WORDS, INPUT SIZE S=10000 WORDS CLUSTER SETUP. 

  P 

Number 

Of processors 

Runtime 

(ms) 

Speedup 

(x) 

Case 1 1 6164000 1 

Case 1.parallel 10 1043000 5,90 

For the K-Means clustering, the evaluation of the code kernels integrated with Flink was performed on 

the following 3-node cluster setup: 

Å 1 CentOS 8, 1 JobManager, 0 TaskManagers, VM, 16GB RAM 

Å 1 CentOS 7, 4 TaskManagers, 32GB RAM 

Å 1 Red Hat 7, 4 TaskManagers, 32GB RAM 
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For the K-Means algorithm, the obtained results are illustrated in Table 14. 

TABLE 14. NLP K-MEANS CLUSTERING FLINK RESULTS. 

  P 

Number 

Of 

processors 

I 

Number 

of 

iterations 

K 

Number 

of 

centroids 

q V 

Vocabulary 

Size 

(i.e number 

of 

dimensions) 

N 

Number of 

Documents 

(i.e. 

number of 

points) 

Runtime 

(ms) 

Speedup 

(x) 

Case 

1 

1 10 120 4 18715 11439 225500 1 

Case 

1.pa

rallel 

8 10 120 4 18715 11439 91830 2,455625 

Case 

2 

1 10 500 0 38446 114239 18610852 1 

Case 

2.pa

rallel 

8 10 500 0 38446 114239 11278737 1,650083 
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FIGURE 8. DURATION OF TASKS PERFORMING K-MEANS CLUSTERING MEASURED IN LOCAL CLUSTER. 

Results from integrated Flink version on ICCS cluster. For the Levenshtein algorithm with the use of Peel 

bundle on the ICCS platform, the following performance results were produced (Figure 9). Three runs of 

the same experiment are performed, each one showing the scaling speedup as the number of nodes and 

tasks per node is increasing. In Figure 9 we present the results for Levenshtein dictionary size of 159.624 

words, input size 10.000 words for all runs at different cluster setups of ICCS cluster. 
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FIGURE 9. NLP LEVENSHTEIN ON ICCS CLUSTER. 

TABLE 15. LEVENSHTEIN DICTIONARY SIZE V=159624 WORDS, INPUT SIZE S=10000 WORDS /  SPEEDUP AS NR OF 

NODES IS INCREASING ON ICCS CLUSTER. 

Nr of Nodes 1 Node 2 Nodes 4 Nodes 8 Nodes 

Speedup (x) 

1 Task per 

node 

1,00 1,93 3,47 5,49 

2 Tasks per 

node 

1,00 1,85 3,10 4,32 

4 Tasks per 

node 

1,00 1,65 2,55 3,25 

8 Tasks per 

node 

1,00 1,52 2,00 2,18 

TABLE 16. SPEEDUP AS NR OF TASK PER NODE IS INCREASING. 

Nr of Nodes 1  Node 2 Nodes 4 Nodes 8 Nodes 

Speedup (x) 

1 Task per 

node 

1,00 1,00 1,00 1,00 
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2 Tasks per 

node 

1,80 1,73 1,61 1,42 

4 Tasks per 

node 

3,44 2,94 2,52 2,03 

8 Tasks per 

node 

5,79 4,55 3,34 2,29 

 

TABLE 17. LEVENSHTEIN DICTIONARY SIZE V=159624 WORDS, INPUT SIZE S=10000 WORDS /  SPEEDUP AS NR OF 

NODES AND TASKS PER NODE ARE INCREASING ON ICCS CLUSTER. 

Nr of Nodes 1 Node 2 Nodes 4 Nodes 8 Nodes 

Speedup (x) 

1 Task per 

node 

1,00 1,93 3,47 5,49 

2 Tasks per 

node 

1,80 3,33 5,58 7,78 

4 Tasks per 

node 

3,44 5,68 8,76 11,18 

8 Tasks per 

node 

5,79 8,79 11,60 12,61 

For K-Means clustering with the use of Peel bundles on the ICCS platform, the following performance 

results were produced, when we run the algorithm with the following parameters: 

· K=500, I=20, V=11635, N=11439, where: 

K is the number of centroids (clusters) 

I is the number of iterations 

V is the vocabulary size (i.e. number of dimensions) 

N is the number of documents (i.e. number of points) 

Three runs of the same experiment are performed, each one showing the speedup as the number of nodes 

and tasks per node is increasing as presented in Figure 10. 
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FIGURE 10. NLP K-MEANS ON ICCS CLUSTER. 

 

TABLE 18. K-MEANS CLUSTERING FOR K=500, I=20, V=11635, N=11439 /  SPEEDUP AS NR OF NODES IS INCREASING 

ON ICCS CLUSTER. 

Nr of Nodes 1  Node 2 Nodes 4 Nodes 8 Nodes 

Speedup (x) 

1 task per 

node 

1,00 1,01 1,21 1,29 

2 tasks per 

node 

1,00 0,84 1,28 1,19 

4 tasks per 

node 

1,00 1,02 1,07 1,15 

8 tasks per 

node 

1,00 1,56 1,82 1,30 

TABLE 19. K-MEANS CLUSTERING FOR K=500, I=20, V=11635, N=11439 /  SPEEDUP AS NR OF TASKS PER NODE IS 

INCREASING ON ICCS CLUSTER. 

Nr of Nodes 1 Node 2 Nodes 4 Nodes 8 Nodes 

Speedup (x) 
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1 tasks per 
node 

1,00 1,00 1,00 1,00 

2 tasks per 
node 

1,44 1,19 1,52 1,32 

4 tasks per 
node 

3,29 3,33 2,90 2,92 

8 tasks per 
node 

2,86 4,41 4,28 2,89 

TABLE 20. K-MEANS CLUSTERING FOR K=500, I=20, V=11635, N=11439 /  SPEEDUP AS NR OF NR OF NODES AND 

TASKS PER NODE ARE INCREASING ON ICCS CLUSTER. 

Nr of Nodes 1 Node 2 Nodes 4 Nodes 8 Nodes 

Speedup (x) 

1 Task per 

Node 

1,00 1,01 1,21 1,29 

2 Tasks per 

Node 

1,44 1,20 1,84 1,70 

4 Tasks per 

node 

3,29 3,37 3,52 3,77 

8 Tasks per 

Node 

2,86 4,46 5,19 3,73 

wŜǎǳƭǘǎ ŦǊƻƳ ƛƴǘŜƎǊŀǘŜŘ Cƭƛƴƪ ǾŜǊǎƛƻƴ ƻƴ ɼɾɮʋ ŎƭǳǎǘŜǊΦ For the Levenshtein algorithm with the use of 

Peel experiments on the ΚΜΑΧ platform, the following performance results shown in Figure 11 are 

produced. Three runs of the same experiment are performed, each one showing the speedup as the 

number of nodes and tasks per node is increasing. As in the ICCS cluster case, in Figure 11 we present the 

results for Levenshtein dictionary size of 159.624 words, input size 10.000 words for all runs at different 

cluster setups of the KMAX cluster. 
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FIGURE 11. NLP LEVENSHTEIN ON KMAX CLUSTER. 

TABLE 21. LEVENSHTEIN DICTIONARY SIZE V=159624 WORDS, INPUT SIZE S=10000 WORDS /  SPEEDUP AS NR OF 

NODES IS INCREASING ON KMAX CLUSTER. 

Nr of 

Nodes 

1 Nodes 2 Nodes 4 Nodes 8 Nodes 16 Nodes 

Speedup (x) 

1 Task per 

node 

1,00 1,76 3,07 5,53 9,29 

2 Tasks 

per node 

1,00 1,79 2,96 5,07 7,35 

4 Tasks 

per node 

1,00 1,74 2,88 4,66 6,68 

TABLE 22. LEVENSHTEIN DICTIONARY SIZE V=159624 WORDS, INPUT SIZE S=10000 WORDS /  SPEEDUP AS NR OF TASKS 

PER NODE IS INCREASING ON KMAX CLUSTER. 

Nr of 

Nodes 

1 Nodes 2 Nodes 4 Nodes 8 Nodes 16 Nodes 

Speedup (x) 

1 Task per 

node 

1,00 1,00 1,00 1,00 1,00 

2 Tasks 

per node 

1,90 1,93 1,83 1,74 1,50 
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4 Tasks 

per node 

3,41 3,39 3,21 2,87 2,45 

TABLE 23. LEVENSHTEIN DICTIONARY SIZE V=159624 WORDS, INPUT SIZE S=10000 WORDS /  SPEEDUP AS NR OF NR OF 

NODES AND TASKS PER NODE ARE INCREASING ON KMAX CLUSTER. 

Nr of 

Nodes 

1 Nodes 2 Nodes 4 Nodes 8 Nodes 16 Nodes 

Speedup (x) 

1 Task per 

node 

1,00 1,76 3,07 5,53 9,29 

2 Tasks 

per node 

1,90 3,39 5,62 9,63 13,96 

4 Tasks 

per node 

3,41 5,95 9,84 15,89 22,81 

For K-Means clustering with the use of Peel bundles on the KMAX platform, the following performance 

results were produced, when we run the algorithm with the following parameters: 

· K=200, I=20, V=11635, N=11439, where: 

K is the number of centroids (clusters) 

I is the number of iterations 

V is the vocabulary size (i.e. number of dimensions) 

N is the number of documents (i.e. number of points) 

Three runs of the same experiment are performed, each one showing the speedup as the number of nodes 

and tasks per node is increasing as presented in Figure 12. 
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FIGURE 12. NLP K-MEANS ON KMAX CLUSTER. 

TABLE 24. K-MEANS CLUSTERING FOR K=200, I=20, V=11635, N=11439 /  SPEEDUP AS NR OF NODES IS INCREASING 

ON KMAX CLUSTER. 

Nr of 

Nodes 

1 Nodes 2 Nodes 4 Nodes 8 Nodes 16 Nodes 

Speedup (x) 

1 Task per 

node 

1,00 1,24 1,40 1,37 1,41 

2 Tasks 

per node 

1,00 1,36 1,31 1,63 1,48 

4 Tasks 

per node 

1,00 1,02 1,37 1,63 1,49 

TABLE 25. K-MEANS CLUSTERING FOR K=200, I=20, V=11635, N=11439 /  SPEEDUP AS NR OF TASKS PER NODE IS 

INCREASING ON KMAX CLUSTER. 

Nr of 

Nodes 

1 Nodes 2 Nodes 4 Nodes 8 Nodes 16 Nodes 

Speedup (x) 

1 Task per 

node 

1,00 1,00 1,00 1,00 1,00 

2 Tasks 

per node 

1,24 1,36 1,17 1,48 1,31 
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4 Tasks 

per node 

1,89 1,55 1,85 2,24 2,00 

TABLE 26. K-MEANS CLUSTERING FOR K=500, I=20, V=11635, N=11439 /  SPEEDUP AS NR OF NR OF NODES AND 

TASKS PER NODE ARE INCREASING ON KMAX CLUSTER. 

Nr of 

Nodes 

1 Nodes 2 Nodes 4 Nodes 8 Nodes 16 Nodes 

Speedup (x) 

1 Task per 

node 

1,00 1,24 1,40 1,37 1,41 

2 Tasks 

per node 

1,24 1,70 1,63 2,02 1,84 

4 Tasks 

per node 

1,89 1,93 2,59 3,07 2,82 

 

3.2.4 Green Buildings 
The Sparks Analytics Engine utilized in the Green Buildings UC is a processing engine that provides 

analytics and storage for persisting extracted results. It receives events from multiple sensors and 

executes aggregate operations on them. Sensors produce (periodically/asynchronously) events that are 

sent to the Sparks Analytics Engine. These events are usually tuples of pairs: value and timestamp. All data 

received is collected and forwarded to a queue. From there, it gets processed in real time by the 

Processing Engine cluster. The computed analytics summaries are stored in a NoSQL database. Each 

Sparks Engine processing job has the ability to be easily modified, in order to accommodate aggregation 

operations. The engine consists of tasks responsible for a specific type of sensor. The chain of aggregators, 

called process blocks in Sparks Analytics Engine, aggregate data for specific time intervals. Events reaching 

the Analytics Engine message broker are processed consecutively in a time-window manner calculating 

aggregation results. 

The implementation of the Green Buildings Analytics UC has been modified to meet the requirements of 

the current status of the E2Data execution engine. Based on this, the processing engine has been adapted 

to a batch processing version utilizing the Apache Flink DataSet API while normally the Sparks Analytics 

Engine operates on stream processing. To achieve efficient data analytics provision, the most crucial factor 

data is the processing time of a batch of sensor data. Based on this the preliminary results presented here 

evaluate the processing time that the Flink version of Sparks Analytics engine achieves. The Green 

Buildings UC Peel Bundle used for the following evaluation results can be found under the project’s Git 

repository: https://github.com/E2Data/e2data-gb-peel 

3.2.4.1 Datasets 
For the performance evaluation of the Apache Flink DataSet version of the Green Buildings Analytics UC 

we are using a synthetic input dataset simulating the processing of 7.200.000 data entries for a time 

period of 60 minutes. In detail, the evaluated dataset contains input data from 2.000 sensors generating 
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data with one-minute granularity per sensor for the time period of one hour. The format of the Green 

Buildings dataset is comma separated values with each value representing the unique identifier of the 

sensor, the timestamp of the event, and the actual value of the measurement. Table 27 summarizes the 

Green Buildings dataset characteristics. 

TABLE 27. GREEN BUILDINGS DATASET CHARACTERISTICS. 

Description Used in experiment Size (MB) Data entries 
Synthetic dataset Green Buildings 330 7.200.000 

 

3.2.4.2 Results 
The performance evaluation results of the Green Buildings UC are performed in a combined scale-

out/scale-up way on both the ICCS x86 and KMAX Aarch64 clusters. The number of 

TaskManagers/Workers are increased to measure the influence of scaling out the cluster while at the 

same time the number of the task slots per TaskManager/Worker is increased to, in order to investigate 

the scaling up impact on each individual TaskManager/Worker of the cluster. 

Figure 13 and Figure 14 present the execution time in seconds for the Green Buildings UC Flink 

implementation on the KMAX Aarch64 and ICCS x86 testbeds respectively. In both figures, we present 

runtime results in seconds for the Green Buildings Peel Bundle scaling out the number 

TaskManagers/Workers and scaling out the number of task slots. 

 

FIGURE 13. GREEN BUILDINGS RUNTIME ON KMAX CLUSTER. 
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FIGURE 14. GREEN BUILDINGS RUNTIME ON X86 CLUSTER. 

The first immediate and anticipated result is that increasing the total number of task slots on the clusters 

always results in improved runtimes of the evaluated application. Moreover, we can notice that scaling 

out the cluster provides higher gains than scaling up the task slots on each node. Moreover, as already 

noticed in the K-Means discussion, the improvement on the runtime performance tends to be sublinear 

but this is not always the case on both clusters due to parameters other than the available task slots such 

as the Flink initialization time, and the network communication for the inter-worker synchronization. 

Finally, an anticipated notice comparing the results of the two testbeds, is the noticeable higher 

performance of the x86 cluster against the Aarch64 cluster due to the type of computational resources of 

the two testbeds. 

3.3 Integration Evaluation Results 
As described in Section 1.1, the v2.0 of the Apache Flink-TornadoVM integration achieves the same 

functionality with v1.0 in terms of heterogeneous hardware execution. However, it abstracts away the 

hardware acceleration from the Flink user by transparently executing the unmodified Flink application on 

the hardware accelerator. Hence, the API that was introduced in v1.0 has been deprecated and developers 

can use their unmodified code with the E2Data software stack. In order to assess the performance of v2.0, 

we compare the end-to-end execution times of the K-Means algorithm of versions 1.0 and 2.0. We should 

observe identical performance with a slight performance benefit for v2.0 due to the added optimization 

of reading the data directly from the byte buffers of the JVM, rather than performing array copies as in 

v1.0. 

Figure 15 shows the relative speedup of v2.0 against V1.0 while scaling the input data sizes of K-Means. 

The experiment has been performed on an integrated Intel GPU (HD 620). 
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FIGURE 15. RELATIVE SPEEDUP OF V2.0 AGAINST V1.0 OF THE APACHE FLINK-TORNADOVM INTEGRATION. 

As shown in Figure 15, v2.0 outperforms v1.0 up to 30%. However, as the data sizes increase, the 
performance of v2.0 drops due to the memory pressure created to the JVM. The extra memory overhead 
results from the additional dynamically created classes that bind the Flink code with TornadoVM. 
However, since these classes will be created only once and will be consequently reused, it is foreseen that 
these overheads will not manifest for long running applications. In addition, on larger machines which 
have more memory, even if this overhead exhibits temporal behavior, it will be further ameliorated. 
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4. Conclusions 
This document presented the intermediate outcomes of WP6 on the integration, configuration, 

deployment and evaluation of the E2Data software stack and the UCs applications. We presented here 

the v2.0 integration of Apache Flink and TornadoVM detailing the differences and improvements 

compared to v1.0 and we also provided a comparative evaluation between the two versions highlighting 

the introduction of transparent hardware acceleration without exposing any additional APIs to Apache 

Flink in terms of programmability. We further described the current status of the UCs applications porting 

on Apache Flink. 

Afterwards, we presented the software components realizing the E2Data deployment environment, i.e. 

Apache Flink, Apache Hadoop YARN and TornadoVM and we also presented the current status of the x86 

and Aarch64 E2Data testbeds providing the technical details of them. 

In the last part we described the test suite utilized and extended to meet the requirements of the E2Data 

performance evaluation providing software and performance portability on the heterogeneous execution 

nodes of E2Data and ensuring reproducibility for the UCs applications and the benchmarking algorithms. 

Next we presented and discussed the baseline performance results for the UCs implementation ported 

on Apache Flink on both testbeds and we finally presented and analyzed the v2.0 integration performance 

evaluation utilizing the K-Means algorithm against the version 1.0 of the integration. 

Future steps towards the final deliverable of WP6 include the final version of E2Data components stack 

integration demonstrating the correct operation of entire E2Data system on large-scale data sets on 

heterogeneous based accelerators on both x86 and Aarch64 architectures. Moreover, we will provide 

reports on performance/power gains on all UCs for the achievement of the project’s requirements. To 

this direction all the UCs implementations will be finalized and fine-tuned to their final version and the 

testing framework will be further extended and finalized as a result of more intensive testing. Finally, 

power consumption monitoring capabilities will be added to the KMAX cluster and integrated with the 

Peel test framework. 
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